
CyBOK Wiki:
feasibility study
Documentation
Lőrinc Thurnay University for Continuing

Education Krems

CyBOK © Crown Copyright, The National Cyber Security Centre 2024.
This information is licensed under the Open Government Licence v3.0. To view this licence, visit
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/.

When you use this information under the Open Government Licence, you should include the following attribution:
CyBOK Wiki: feasibility study Documentation © Crown Copyright, The National Cyber Security Centre 2024, licensed under the Open
Government Licence https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/.

https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/


Wiki   |   Feasibility Study 

1 
 

1. Executive summary 

CyBOK is distributed as PDF, a medium inherently tailored for print rather than browser-based 
accessibility. In this study, we assessed the technical feasibility of creating an automated 
software framework that publishes CyBOK content to a browser-based Wiki system - CyBOK Wiki 
- thus improving CyBOK's accessibility, discoverability, and user experience. 

Publishing CyBOK on a web portal is challenging since CyBOK is written in LaTeX, a complex 
typesetting language designed for print media, but one without a segmentation and conversion 
standard for the web. CyBOK itself is also a vast, interlinked resource with complex LaTeX 
customizations, which adds to the technical complexity. On the other hand, CyBOK's content by 
its nature fits well with a structured, hyperlinked online resource like Wiki. 

This study aims to explore and describe the opportunities, limitations, technical challenges and 
questions to be answered that relate to the implementation of CyBOK Wiki. It does so to inform 
CyBOK's stakeholders in the decision whether and how to realize CyBOK Wiki, and lay the 
foundations to the eventual CyBOK Wiki project's planning, design, and technical implementation. 
These efforts were driven by the manual exploration of CyBOK's source code and the development 
of a proof-of-concept software framework. The software pre-processes, segments, converts and 
publishes CyBOK's LaTeX source to a Wiki system with promising results - proving the feasibility 
of key concepts of CyBOK Wiki. 

Lessons learned suggest that the more complex problems beyond the scope of the proof-of-
concept are also surmountable. We identify and describe several complementary tools and 
methods to implementing conversion mechanisms that are not supported by existing tools. We 
describe how to handle rarely occurring but complex conversion tasks manually, in a sustainable 
and reliable way. 

We conclude that in some cases, changing some structural elements of the CyBOK LaTeX source 
may be the best (or only) solution for solving conversion issues. This will create additional work 
to the CyBOK code base maintainer and is something that future CyBOK authors and content 
editors should also ideally adopt. There are no changes foreseen that would impact the CyBOK 
PDF release in any way. 

We identify open questions that must be debated and answered to implement CyBOK Wiki beyond 
the proof-of-concept. These questions are mostly about the change of medium from PDF to a web 
portal: how we treat CyBOK as a structured document in a web portal, what new functions to give 
it and how to present it on a new user interface. We finally outline the next steps to be taken 
towards the realization of CyBOK Wiki. The Appendix includes annotated screenshot illustrations 
of the proof-of-concept software framework. 

  



Wiki   |   Feasibility Study 

2 
 

2. Table of contents 

1. Executive summary ....................................................................................................................... 1 

2. Table of contents ........................................................................................................................... 2 

3. Glossary ......................................................................................................................................... 3 

4. Introduction .................................................................................................................................... 3 

4.1 Motivation ............................................................................................................................... 4 

4.2 Challenges .............................................................................................................................. 4 

4.3 Methodology .......................................................................................................................... 5 

5. The proof-of-concept framework ................................................................................................. 5 

5.1 Proof of concept .................................................................................................................... 7 

5.2 Development environment .................................................................................................... 7 

5.3 Installation .............................................................................................................................. 8 

5.4 Main functionality .................................................................................................................. 8 

5.5 Results .................................................................................................................................. 10 

5.6 Other functions .................................................................................................................... 10 

6. Considerations for implementation ........................................................................................... 11 

6.1 Tackling LaTeX expressions that are not converted correctly by Pandoc ....................... 11 

6.2 Manual tasks in the automated pipeline ............................................................................ 13 

6.3 Changing the LaTeX source ................................................................................................ 13 

6.4 KA-specific functionality ...................................................................................................... 14 

6.5 Math ...................................................................................................................................... 14 

6.6 TikZ ....................................................................................................................................... 15 

6.7 Indices, acronyms, glossary (and references) ................................................................... 16 

6.8 PDFs as illustrations ............................................................................................................ 18 

6.9 To-dos ................................................................................................................................... 19 

7. Open questions ............................................................................................................................ 20 

7.1 Which CyBOK PDF (sub)sections should be segmented into CyBOK Wiki pages? ......... 21 

7.2 Extracting (sub)chapter titles and identifiers ..................................................................... 22 

7.3 How to implement and display CyBOK's structure in MW pages? ................................... 23 

7.4 How to display section titles? ............................................................................................. 25 

7.5 Migrating LaTeX metadata to MediaWiki ........................................................................... 27 

7.6 Versioning ............................................................................................................................. 28 

8. Conclusions ................................................................................................................................. 28 

8.1 Risks and limitations ........................................................................................................... 29 

9. Next steps .................................................................................................................................... 30 

  



Wiki   |   Feasibility Study 

3 
 

3. Glossary 

• CyBOK PDF: the current, official and canonical PDF-based release of CyBOK 

• CyBOK Wiki: the prospective, MediaWiki-driven web portal release of CyBOK of which the 
study at hand investigates the feasibility. 

• IAGs: indexes, acronyms and glossary items (collectively) 

• KA: Knowledge Area 

• MW: MediaWiki - the open source collaboration and documentation platform that also 
drives WikiPedia 

• SEO: Search Engine Optimization 

• UI: User interface 

• UX: User experience 

4. Introduction 

Over 1,000 pages, CyBOK - The Cyber Security Body Of Knowledge - is distributed as PDF, a 
medium inherently tailored for print rather than browser-based accessibility. Even though it is only 
available online, CyBOK is published in a format that is not optimal for the computer-based 
interactive exploration and reading experience, and even less so for smaller handheld devices. 
Therefore, the purpose of this project is to determine whether it is feasible to implement CyBOK 
Wiki, an automated software framework that publishes CyBOK content to a browser-based Wiki 
system to improve its accessibility, discoverability, and user experience. 

This is a feasibility study with a technical focus. It aims to explore and describe opportunities, 
limitations, technical challenges and questions to be answered that relate to the implementation 
of CyBOK Wiki. The study is successful if its findings help inform CyBOK's stakeholders in the 
decision whether and how to realize CyBOK Wiki, and lay the foundations to the eventual CyBOK 
Wiki project's planning, design, and technical implementation. 

While this study's aim is not the implementation of a software itself, it does produce a proof-of-
concept software framework. The development of this framework drives and informs the above 
defined focus points. The proof-of-concept attempts the pre-processing, segmentation, 
conversion and publishing of CyBOK's LaTeX source to a Wiki system. 

In the first chapter of this document, we introduce the context – 4.1 Motivation, 4.2 Challenges, 
and 4.3 Methodology - of this study. We then describe 5 The proof-of-concept framework 
software, the development of which drove this study: we give an overview of its 
functionality and discuss its results. We continue with technical 6 Considerations for 
implementation: important lessons learned and ideas to pursue for the implementation of 
CyBOK Wiki beyond the proof-of-concept. We provide a detailed discussion of 7 Open 
questions that must be debated and answered to move forward with realizing CyBOK Wiki. 
We finish off with 8 Conclusions and a broad overview of 9 Next steps to be explored 

https://www.cybok.org/knowledgebase1_1/
https://www.mediawiki.org/wiki/MediaWiki


Wiki   |   Feasibility Study 

4 
 

beyond this study. The Appendix includes annotated screenshot illustrations of the proof-
of-concept software framework. 

4.1 Motivation 

Wikis are popular browser-based encyclopedia-like knowledge management systems that 
organize information in pages (or Articles) and offer rich functionality for textual data. Wikis are 
usually open for the public (or at least a community) to freely edit (this is a function that would 
not be utilized in CyBOK Wiki). 

The idea of CyBOK Wiki is to make CyBOK's Knowledge Areas (KA) and their (sub)sections 
available as smaller, self-contained, but interlinked Wiki pages, enabling the many benefits of 
using a cutting-edge web portal instead of a PDF file for exploring and studying CyBOK. These 
foreseen benefits include: 

• User experience: Users could get automatic recommendations for relevant CyBOK 
(sub)sections to read and search CyBOK with a Wiki search engine. They can easily 
navigate across (sub)sections and have many sections open in browser tabs 
simultaneously. Copying and pasting from HTML retains formatting, while doing so from 
PDF often introduces artifacts. 

• Accessibility: Modern web portals are responsive to screen size: they offer optimal reading 
and navigation experience on large computer screens as well as small smartphones, 
whereas reading the CyBOK PDF on a phone is an arduous experience. HTML resources 
are customizable for users’ accessibility needs, e.g.: by letting them change typeface, size, 
colours, or contrast. HTML is well suited for screen readers. 

• Discoverability: While PDFs are searchable, search engines penalize them in their result 
rankings. Modern web portals are optimized for search engines, making it easier to 
discover CyBOK, increasing its exposure. As standalone pages, users can link to specific 
(sub)sections from other websites, blog posts, emails, or bibliographies. 

4.2 Challenges 

CyBOK is written in LaTeX, a complex, powerful document typesetting system that has been in 
development for forty years. It allows for heavy customization, templating, and macros - indeed, 
it is a Turing complete language. LaTeX is created with print media (rather than web publishing) 
in mind, and it is marked both in its capabilities and design. 

While rendering to PDF (an industry standard print-focused document format) is the primary use 
case of LaTeX nowadays, due to the above factors, segmenting and converting to web-based 
content is a complex task that is not standardized. Tools such as Pandoc convert from LaTeX to 
web-based formats (such as markup languages used in Wiki software), but they are not perfect; it 
cannot be, not without a standard definition of how to convert to web formats. CyBOK heavily 
relies on complex LaTeX functionality and customization. Therefore, one challenge of CyBOK Wiki 
is the conversion of LaTeX to a Wiki markup format. 

The other challenge has to do with CyBOK: it is itself a long and interlinked document that is edited 
with print (but at least PDF) as the target medium in focus. As a user interface, a PDF document 

https://www.latex-project.org/
https://www.overleaf.com/learn/latex/Articles/LaTeX_is_More_Powerful_than_you_Think_-_Computing_the_Fibonacci_Numbers_and_Turing_Completeness
https://pandoc.org/


Wiki   |   Feasibility Study 

5 
 

(and a book especially) is very different from an online portal, and as such, requires different 
considerations: different navigation, UI elements, formatting concepts and metadata. The 
automated conversion of this vast resource to fit the requirements and enable the benefits of 
another UI, is a challenge. 

Importantly, the content of CyBOK is fitting for a segmented, hyperlinked online resource: it is 
heavily segmented into Knowledge Areas and (sub)chapters and uses (cross)references to create 
linkages with other parts of the document. Larger sections are meant to be comprehensible as 
standalone resources as well, and smaller (sub)sections are contextualized with surrounding and 
cross-referenced (sub)sections as well as citations. 

4.3 Methodology 

This feasibility study was driven by the manual exploration of CyBOK LaTeX source and PDF 
resources, as well as the development of a proof-of-concept software framework that attempts 
to pre-process, segment, convert and publish CyBOK's LaTeX source to a Wiki system. The aim of 
both the exploration and the software development was to identify opportunities, limitations, 
technical challenges and questions to be answered that are relevant to the eventual 
implementation of CyBOK Wiki. 

The scope of exploration and development were determined by the above goals. We pursued 
directions that promised relevant lessons to be learned and we tested our hypotheses against the 
rest of the code base. We did not prioritize implementing robust and reusable code that adheres 
to industry standards required by a production-quality software project, as the additional effort to 
reach high code quality in these regards often did not promise significant learnings about CyBOK 
(having said that, we took care to produce readable code with informative comments, to enable 
reusability beyond the proof-of-concept). We did not pursue the implementation of complex 
development tasks that would have taken a too significant portion of the limited resources 
available to the project - in such cases, we progressed only as far as to be able to assert feasibility, 
describe the nature of the problem and outline a strategy to tackling it. We did not employ an 
established systematic methodology for identifying directions for exploration and development; 
our approach was informed by extensive experience in the exploration and conversion of similarly 
complex semi-standardized data. 

We noted opportunities, limitations, technical challenges and questions to be answered as soon 
as we identified them, and elaborated on them in this document later. 

This study had access to the LaTeX source code and respective PDF releases of three of the 22 
CyBOK Knowledge Areas: Adversarial Behaviours, Cryptography, and Law and Regulation (and is 
informed by the superficial familiarity with the full CyBOK PDF release). Therefore the results, 
conclusions and recommendations of this study are to be considered with the caveat that they 
are based only on a small segment of CyBOK. 

5. The proof-of-concept framework 

https://ieeexplore.ieee.org/document/9559722
https://ieeexplore.ieee.org/document/9559722
https://www.cybok.org/media/downloads/Adversarial_Behaviours_v1.0.1.pdf
https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf
https://www.cybok.org/media/downloads/Law_Regulation_v1.0.2.pdf


Wiki   |   Feasibility Study 

6 
 

In the following, we describe the proof-of-concept CyBOK Wiki software framework, the 
development of which drove this study: we give an overview of its functionality and discuss its 
results. 

 
Figure: the broad architecture of the CyBOK Wiki proof-of-concept framework 

The CyBOK Wiki framework consists of a conversion framework and a web platform. The 
conversion framework consists of two components. 

The main component of the conversion framework is a custom Python framework, heavily using 
TexSoup, a "fault-tolerant, Python3 package for searching, navigating, and modifying LaTeX 
documents." The Python framework is custom written for this project. It handles the pre- and 
postprocessing of LaTeX files for segmentation and ingestion to the Pandoc converter. It 
segments large LaTeX documents into smaller self-contained LaTeX documents of CyBOK 
(sub)sections, to be turned into MediaWiki (MW) pages. It orchestrates Pandoc conversion to MW 
markup and performs postprocessing on MW markup before uploading to MW via its API. 

The other is Pandoc, a universal document converter supporting both LaTeX and MediaWiki 
markup, written in Haskell and extensible by plugins written in Lua. LaTeX is one of Pandoc's main 
focus points and it supports advanced features of the language including tables, references and 
custom command definitions (to some extent). Pandoc uses an intermediary, native 
representation of documents (abstract syntax tree or AST) to convert between arbitrary document 
formats (so in essence, conversion happens twice: LaTeX → AST → MW markup). 

https://github.com/alvinwan/TexSoup/
https://pandoc.org/
https://www.lua.org/


Wiki   |   Feasibility Study 

7 
 

The CyBOK Wiki platform is driven by MediaWiki (MW). It renders the uploaded pages into the 
familiar Wiki view, along with tables, math formulae, references and hyperlinks, and also provides 
complex, full-fledged online encyclopedia and knowledge management features such as search, 
categories, dynamic content, etc. out-of-the-box and extensible via extensions. MW is used by 
thousands of websites, including Wikipedia, the seventh most visited website on the Internet. 
Amongst MW's foci is accessibility. MW is a robust, mature software that has been in active 
development for over 22 years. As such, it is a reliable framework to build a sustainable project 
on. 

All of the above software and packages are released with permissive open source licenses 
(Python: PSFL, TexSoup: BSD-2-Clause, Pandoc: GPL, MediaWiki: GPLv2+) 

5.1 Proof of concept 

The CyBOK Wiki framework created in this feasibility study is a proof-of-concept. Its main purpose 
is to explore the technical possibilities and limitations of converting a massive, heavily customized 
and interlinked LaTeX codebase (CyBOK) into a well-segmented Wiki-like platform. It serves to 
explore suitable tools, architecture, techniques and identify pain points that can be considered 
when implementing a real, production-ready CyBOK Wiki. 

With this, and considering the project's small size, the focus during the software prototyping was 
breadth rather than depth, exploration rather than industry best practices, efficiency rather than 
stability. The software is not fully packaged and ready for deployment and has some functions 
unfinished. Having said all that, care has been taken to achieve code readability, including 
comments, especially for parts that are not integrated in the main function pipeline and therefore 
their logic is not informed by context. 

Its main function is the processing and segmentation of LaTeX files, conversion to MW markup 
and upload to MediaWiki. It performs these functions on the three KAs that are in scope of this 
exploratory project without failure. In addition, it comes with some exploratory tools, some 
features that are not implemented in the main pipeline function because they are not stable, and 
some abandoned approaches, fragments of which may still prove useful in the future. 

Below is an overview of the codebase with the aim of summarizing functionalities and serve as a 
guide for exploring and understanding the source code and architecture (for this, it is advisable to 
follow the source code along with reading). 

5.2 Development environment 

The framework has been developed and tested on the following system: 

• OS: Ubuntu 20.04.6 LTS 

• Python 3.8.10 

• Pandoc 3.1.12.3 (Lua 5.4) 

• MediaWiki 1.41.0 (Dockerized, with MariaDB 11.2.2, also Dockerized) 

• Azure VM: Standard D2s v3 

https://www.mediawiki.org/wiki/MediaWiki
https://en.wikipedia.org/wiki/List_of_most-visited_websites
https://www.mediawiki.org/wiki/Accessibility
https://en.wikipedia.org/wiki/Python_Software_Foundation_License
https://learn.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series


Wiki   |   Feasibility Study 

8 
 

• CyBOK: v1.1 (Adversarial Behavior KA git commit: bab08478, Cryptography KA git commit: 
137df867 Law and Regulation KA git commit: 71c2527b) 

5.3 Installation 

• Install additional required Python libraries with pip3 install -r requirements.txt 

• Get suitable Pandoc executable from GitHub and install via sudo dpkg -i $DEB (Ubuntu). 

• config/mediawiki-docker-compose.dist.yaml can serve as a template to set up a 
dockerized MW environment. 

• Take add CyBOK Wiki-specific settings to MW's LocalSettings.php from the end of 
config/mediawiki-LocalSettings.php 

• Install MW dependencies for PDF rendering (see also chapter 6.8 PDFs as illustrations) 

• Define the MW API endpoint in config/config.yaml (API works anonymously) 

• LaTeX projects are to be placed in the data folder, e.g.: data/ab, data/c, etc. 

5.4 Main functionality 

The main functionality of the proof-of-concept is the LaTeX-to-MW markup segmentation, 
conversion and posting to MW. This process is started by running run.py. run.py triggers the main 
logic, Segmenter (in segmenter.py) which orchestrates much of the main functionality. 

First, the LaTeX files are loaded as strings and LaTeX-agnostic preprocessing is applied by 
processors.preprocessor.raw_tex_preprocessor() on the whole LaTeX documents. (removing 
non-breaking spaces before citations, removing LaTeX comments, changing \endnote{} to 
\footnote{}). Then LaTeX is parsed by TexSoup, resulting in a detailed, searchable, modifiable, 
tree structure of LaTeX expressions and text tokens that can be later converted back to LaTeX 
files. 

5.4.1 Segmentation 

Here tex_to_pages() performs the actual segmentation of a "flat" LaTeX file to a list of pages, 
divided by (sub)section headings. Pages are Page object, that (apart from retaining the dictionary 
of TexSoup objects that represent the LaTeX content) also maintain the properties 

• cybok_page_id: the (sub)section's ID from the related \label{}, 

• cybok_level: the heading level of the page in the LaTeX document (is it a section, 
subsection, subsubsection?) 

• cybok_title: the title of the (sub)section and therefore the page 

• children: subsections under the page at hand. 

make_pages_hierarchy creates a hierarchic Page dictionary representing the KA's (sub)section 
structure. 

https://bitbucket.org/helenrjones/ab/src/bab0847876d4719df4e3eeae0f51c4762b360835/content.tex
https://bitbucket.org/helenrjones/c/commits/137df867b70125b084c9a3627e11547f241c7b58
https://bitbucket.org/helenrjones/lr/commits/71c2527b100a83f80f8953c7ab64776e3b7f16c5
https://github.com/jgm/pandoc/releases/tag/3.1.12.3


Wiki   |   Feasibility Study 

9 
 

See chapter 7.1 Which CyBOK PDF (sub)sections should be segmented into CyBOK Wiki pages? 
for more detail about the nature of the above task. 

5.4.2 Processing and posting pages 

process_pages() iterates through all pages (recursively) and performs the following: 

add_hierarchic_links() adds navigation links to parent and child sections (as LaTeX \ref{} 
expressions to be converted to MW markup by Pandoc). 

embed_into_maintex() embeds the isolated LaTeX markup of the (sub)Section into the main.tex 
(or equivalent) of the KA's LaTeX project. main.tex is intended to be the main wrapper of the whole 
KA's LaTeX project, it imports all LaTeX styles, classes, bibliography items, and other macros, as 
well as including content.tex (or equivalent, holding the actual LaTeX content of the KA). In this 
function we replace the inclusion of content.tex with including the section's contents. This 
function gives the same necessary context to the section, so when Pandoc converts the page, it 
can correctly parse CyBOK-specific LaTeX expressions, resolve bibliography items, etc. The result 
of this function is a new, "flat" LaTeX source of the Page. 

convert_to_mediawiki() is a wrapper around Pandoc, it orchestrates the Pandoc conversion and 
captures its results. With pandoc_debug set to True (must be changed in source), custom Lua filters 
can be debugged: Pandoc outputs (i.e.: the MW markup) are redirected to a file and print 
commands specified in Lua get captured and printed by Python. 

mediawiki.connector.post_page() interfaces with the MW API and posts the page. If there is a 
\label{} associated with the (sub)section being posted, a redirect page is also created where the 
label is the URL, redirecting to the proper content page (where the title URL). This guarantees that 
in-text cross-references to this (sub)sections are turned into working hyperlinks during 
conversion. For more details on this problem and how it requires to change the LaTeX source 
standard, see chapter 7.2 Extracting (sub)chapter titles and identifiers. To demonstrate the proof-
of-concept's page linking operation the changes proposed in the below mentioned chapters have 
been implemented for the Adversarial Behaviors and Cryptography KAs, see data/ab/content.tex 
and data data/c/content.tex, respectively. The LaTeX source of the Law and Regulation KA has 
not been altered, consequently, cross-(sub)section links are broken for this KA. 

5.4.3 Pandoc 

The Pandoc command issued by convert_to_mediawiki() specifies pandoc/mediawiki.lua, a Lua 
script of custom filters. In the proof-of-concept, these highlight acronyms with red (for proof-of-
concept of a Lua filter) and fix \ref{} rendering (by default Pandoc generates intra-page anchor 
links, this is overriden so proper inter-page hyperlinks are generated). 

The command also enables citation rendering, resulting in in-line bracketed [1] links that link to 
the bibliography element, added by Pandoc at the end of the document, with pandoc/ieee.csl is 
specified for proper bibliographic formatting. .bib files containing references are parsed by 
Pandoc automatically. 

https://www.mediawiki.org/wiki/Help:Redirects


Wiki   |   Feasibility Study 

10 
 

5.5 Results 

The whole preprocessing, conversion and upload process described above runs for about 78 
seconds for the three pilot KAs. 

We assess the capabilities of the proof-of-concept implementation by visual comparison of the 
CyBOK PDF and CyBOK Wiki, as well as side-by-side comparison of LaTeX and WM markup 
sources. To summarize: with proper preprocessing, settings and custom filters, Pandoc converts 
LaTeX to MW markup with an impressive quality. See the Appendix for illustrations. 

• The segmentation process isolates 118 (sub)sections across three KAs and uploads them 
as MW pages. 

• Basic text formatting is converted, e.g.: bold, italics, bulletpoints, paragraph breaks, 
headings, etc. 

• In-line citations [1] are converted to hyperlinks pointing at the bibliography at the end of 
each page. 

• Bibliographies are generated automatically at the end of each page, with IEEE style. Only 
those bibliographic elements are included that have references on the page at hand, so 
bibliographies on each page are shorter than the several hundred strong bibliographies at 
the end of the CyBOK PDF KAs. Bibliographic numbering may differ because the CyBOK 
PDF numbering happens on KA level while CyBOK Wiki numbering happens on 
(sub)section level. 

• Cross-references to other (sub)sections are turned into hyperlinks to their respective 
pages. Hyperlink texts are the LaTeX \label{} values of the linked (sub)sections – this 
can be changed, as described in detail in chapter 7.4 How to display section titles? " 

• Notes are correctly referenced and linked in-text and get rendered in the native MW 
reference style at the end of each page (only the ones relevant to that page). 

• Hyperlinks to parent- and subsections are added to ease navigation across the book. See 
chapter 7.3 How to implement and display CyBOK's structure in MW pages? for detailed 
considerations on how to better implement navigation beyond the proof-of-concept. 

• Math formulae are rendered just like in LaTeX, both in-line and as blocks. 

Not everything gets converted to MW markup correctly. Important and barely noticeable elements 
alike may be omitted or converted incorrectly by Pandoc or the rest of the conversion pipeline. We 
do not have a comprehensive list of these discrepancies, as compiling such a resource would 
require meticulous work beyond the resources available in this project. Nevertheless, in this 
document we tried to make note of every discrepancy we have noticed during our work - discussed 
in detail in subsequent chapters or described plainly in the 6.9 To-dos list. The chapter 
6 Considerations for implementation is focused on different strategies to tackle conversion 
discrepancies beyond the proof-of-concept. 

5.6 Other functions 

At the beginning of this study we had not found Pandoc, because it is a universal tool converting 
between more than 50 formats, the LaTeX and MediaWiki conversion search terms initially missed 



Wiki   |   Feasibility Study 

11 
 

this software. For this reason, we started exploring the possibility of building a custom LaTeX to 
MW markup converter. Without significant effort we developed a minimalistic, extensible 
framework that proved surprisingly robust and produced good results. 

Having discovered Pandoc soon after, we compared the two approaches and eventually decided 
that relying on Pandoc is more efficient than continuing with the custom converter. The arguments 
against Pandoc would have been its complicated and multifaceted customization mechanisms 
and the fact that it is written in Haskell (a language the author does not have expertise to debug 
or fork). However, Pandoc handles complex LaTeX solutions such as tables, nested environments 
and custom command definitions very well out-of-the-box - developing these in a custom parser 
would be far too resource intensive. With this, we abandoned the development of the custom 
parser, but include its source code as parts of it might be useful in the development of CyBOK Wiki 
beyond the proof-of-concept - especially pre- and postprocessing snippets such as the properly 
implemented MW native referencing syntax. 

The abandoned custom parser's entrypoint is tex2wiki.py - functionality can be tested by running 
this. The parsers dictionary as well as utils.py and postprocessor.py are used exclusively by this 
parser. The parser produces a MW markup file saved as data/wikitext.txt, without any 
segmentation or interfacing with the MW API. 

A separate tool, tools/list_cmds.py lists all the distinct LaTeX command names used in a LaTeX 
file, counting their instances. It can be useful to go through such a list to verify if all LaTeX 
commands indeed get converted correctly to MW markup. 

The doc/ folder hosts the documentation at hand. 

6. Considerations for implementation 

In this chapter we give detailed descriptions of technical considerations for the implementation 
of CyBOK Wiki beyond the proof-of-concept. 

6.1 Tackling LaTeX expressions that are not converted correctly 
by Pandoc 

The CyBOK LaTeX codebase uses complex macros and contributed packages. Pandoc does an 
impressive job at converting LaTeX source to MW markdown, but not everything works out-of-the-
box. Pandoc is a complex and powerful tool, one that has a number of different ways that can be 
customized: through myriad of settings, different LaTeX engines, templates, plugins and filters 
(both Haskell and Lua, both for input and output). With both the LaTeX source and the tool we use 
to tackle it being complex and highly customizable, it is often hard to debug why certain LaTeX 
expressions are not converted (correctly). 

6.1.1 With Pandoc 

We find that a good way of getting a sense of how Pandoc processes LaTeX (and thus, where the 
conversion pipeline might be broken and what the Pandoc-specific approach to fixing it might be) 

https://pandoc.org/MANUAL.html#option--pdf-engine
https://pandoc.org/lua-filters.html


Wiki   |   Feasibility Study 

12 
 

to create a custom Pandoc Lua filter to access the expression in question, and debugging it in the 
Lua filter, by printing the elem (element) variable. With this, we get an idea of what context Pandoc 
is aware of after having processed the LaTeX expression. If this reveals that Pandoc has the 
contexts necessary for the proper conversion, we can fix it or implement the Lua filter that 
converts, ourselves. See the Pandoc manual's Lua filters chapter for documentation and 
pandoc/mediawiki.lua for examples. 

6.1.2 With TexSoup 

If the element cannot be captured by Lua filter, or important context is shown to be missing while 
debugging Lua, the LaTeX expression is misprocessed somewhere earlier in the Pandoc process. 
If this is the case, rather than submerging the rabbit-hole that is Pandoc's robust, complex way of 
parsing LaTeX, we suggest the creation of a LaTeX preprocessor using the Python TexSoup 
package and standardize or simplify the problematic LaTeX pattern to an expression that Pandoc 
has no problem converting. Without deep familiarity with Pandoc, a set of preprocessors 
implemented in Python is more efficient and more maintainable. 

TexSoup parses LaTeX and builds a rich, fine-grained, object-based tree representation of the 
document. This tree can be navigated, searched and modified much like how JavaScript (or the 
popular python package BeautifulSoup) does so with HTML DOM. TexSoup can be used to change 
LaTeX expressions in place so Pandoc could parse them in the desired way. It can add new LaTeX 
elements to the document to enrich the resulting functionality (e.g.: navigational elements) It can 
be used to segment large LaTeX document to smaller, self-contained chunks and extract 
(meta)data from documents that can inform the conversion pipeline's business logic or serve as 
MW metadata. 

6.1.3 With WikiMedia 

In conjunction with the above methods, one should always consider whether there are MW 
Extensions out there that provide the needed functionality. Conceivably, Pandoc converts the 
LaTeX source correctly, but MW lacks the needed extension to render it properly. We can also 
consider implementing a custom MW Extension if that seems to be the most straightforward 
solution to solving the problem. To this end, we can also consider customizing MW CSS. 

For example, we may want to render acronyms (LaTeX \acrshort and \acrlong) such that they 
appear inline as acronyms and hovering or clicking on them would reveal a tooltip with its 
definition. This could be implemented e.g. as a Lua filter that produces custom MW markup that 
is rendered as desired by an MW extension. 

6.1.4 In LaTeX 

Consider creating custom "LaTeX wrappers" to replace or extend existing LaTeX wrappers (e.g.: 
main.tex), *.sty and *.cls files. Some of the macros or other LaTeX meta-elements are complex 
and (some of) their functions may be specific to print media. These could be removed, their 
functionality simplified or redefined by new LaTeX wrapper files, custom created, tailored for 
Pandoc MW, and web UX/UI in mind. Ultimately, changing the LaTeX source can also be 
considered (see dedicated chapter on this below). 

https://pandoc.org/lua-filters.html
https://github.com/alvinwan/TexSoup/
https://www.crummy.com/software/BeautifulSoup/
https://www.mediawiki.org/wiki/Manual:CSS


Wiki   |   Feasibility Study 

13 
 

6.2 Manual tasks in the automated pipeline 

There may be LaTeX functions (perhaps for example TikZ illustrations, see the 6.6 TikZ chapter) 
that are used only in a few places throughout CyBOK, which are not supported out-of-the-box by 
Pandoc, and the implementation of which would require significant effort. If the effort of 
implementing these significantly outweighs the effort of converting them manually, the latter 
should be considered, as the reduction of future manual efforts by automation may not pay off in 
reasonable time. 

In case the conversion of LaTeX function is left for manual work, it is still recommended that either 
Python preprocessor, or a Pandoc Lua script is implemented at least to identify the occurrence of 
cases (if possible) in the LaTeX source code and create a report of them. This way the person 
responsible for manual conversion will have a reliable and up-to-date checklist of items to be 
manually converted. 

All changes made to pages in MW are tracked by MW. It is crucial to retain the editing history of 
MW pages, so when a subsequent version of CyBOK Wiki is released, the prior version's manual 
changes can be (manually) re-applied to the new version as well. To facilitate this process, a 
reporting tool could be developed for MW, automatically creating a list of manually edited pages 
with the edits highlighted. 

In any case, the number of manual tasks should be kept to a minimum, as having too many of 
them would turn the conversion process inefficient and ultimately unsustainable. 

6.3 Changing the LaTeX source 

As a principle, the LaTeX source is the single source of truth of CyBOK and the primary CyBOK 
medium is its existing PDF release. Here we assume that the goal of a CyBOK Wiki implementation 
project is to convert this source into Wiki markup without affecting the existing processes of 
writing, editing, and publishing the CyBOK PDF. Consequently, we must consider the LaTeX source 
as essentially read-only - a resource that must be interfaced with without the ability of changing 
it. 

Having said that, there might be challenges with the conversion to MW markup where changing 
the structure CyBOK LaTeX source would be the most pragmatic - or indeed the only - solution. 
One such example is the association of (sub)section titles with their respective reference IDs 
(described in the chapter 7.2 Extracting (sub)chapter titles and identifiers. In such cases, we 
should analyse the possibility and consequences of changing the LaTeX source, and if justified, 
suggest such changes to the relevant stakeholders of the CyBOK project. 

Any suggestion for changing the CyBOK LaTeX source should be made with the following 
considerations: 

• Give proper justification to suggestions. Make the suggested changes as simple and 
flexible as possible, and preferably only when there are no alternative solutions.  

o CyBOK is already over 1000 pages long (when rendered in PDF), any new 
requirement or restriction must be applied to the entirety of the existing corpus, 
which requires significant resources of the LaTeX source maintainer. 



Wiki   |   Feasibility Study 

14 
 

o The development of CyBOK, both as an educational resource and as large and 
complex codebase, is a work of dozens of people. New requirement or restriction 
to the source code will affect their work. 

• Understand CyBOK's writing and editing processes and make LaTeX source change 
suggestions compatible with them. 

• Make sure that any suggested change to CyBOK's LaTeX source does not alter the 
appearance or behavior of the CyBOK PDF in any way. 

6.4 KA-specific functionality 

CyBOK Knowledge Areas (KAs) cover a diverse selection of disciplines, with most KAs written and 
edited by different experts. Because of this, KAs are not necessarily uniform in structure and 
format - neither as a publication, nor in its source code. 

CyBOK Wiki must handle KA specific differences. To this end, it is recommended that the CyBOK 
Wiki migration framework is developed in an extendable manner, such that specific parts of the 
conversion pipeline can be extended with logic that may only be applied to converting relevant 
KAs. 

For example: the Law and Regulation KA starts with a NOTICE AND DISCLAIMER, appearing in 
PDF at the beginning of the KA, but we might want to display this on every MW page that belongs 
to the KA. This would necessitate KA-specific preprocessing logic. 

This is recommended to be realized by the python framework that wraps around Pandoc, leaving 
Pandoc KA-agnostic. A practical approach would be object-oriented components, where for 
example a common preprocessor object can be inherited from and extended by a KA-specific 
object that adds KA-specific logic to it. 

We should mention here that CyBOK also has textual content that is outside the scope of KAs, 
namely, Preface and Acknowledgements. Automating the conversion of these to CyBOK Wiki 
might not be worth the effort, though the complexity of the LaTeX implementation of these texts 
can not be asserted in this project as we do not have access to their source. 

6.5 Math 

Most LaTeX math expressions (used widely in KA Cryptography) are converted to Mediawiki by 
Pandoc reliably. With the MW Extension:Math enabled, MW renders these expressions reliably and 
correctly, both in-line and blocked expressions. 

6.5.1 Renderer 

MW Extension:Math by default uses Wikimedia Cloud Services (WMCS), a free SAAS provider to 
render math expressions to SVG using node.js application Mathoid. The renderer can be tested 
with arbitrary LaTeX math expressions on here. 

If a MW page contains too many math expressions to render, WMCS can be unreliable. In such 
case, an in-line error message is rendered on MW. 

https://www.mediawiki.org/wiki/Extension:Math
https://www.mediawiki.org/wiki/Extension:Math
https://wmflabs.org/
https://www.mediawiki.org/wiki/Manual:Mathoid
https://mathoid-beta.wmflabs.org/


Wiki   |   Feasibility Study 

15 
 

When implementing CyBOK Wiki beyond the proof-of-concept, consider deploying self-hosted 
Mathoid server to guarantee Math rendering reliability and avoid having to rely on a SAAS. 

There are other options to render math expressions, including the MathML markup language, 
which supported browsers can render natively (see more at Extension:Math). Consider 
accessibility benefits and browser compatibility drawbacks when choosing MathML over 
rendered SVGs. 

6.6 TikZ 

In KA Cryptography, some figures are generated by the non-LaTeX standard tikz library. See 
example from KA Cryptography PDF page 15 (LaTeX source here):  

 

Considerations for implementing TikZ support: 

6.6.1 WikiMedia extension 

TikZ expressions are not supported natively by MW. A MW Extension:PGFTikZ exists but it has 
not been actively maintained for years. A quick trial of the Extension failed: we installed it and 
copied the example from the Extension's landing page, as well as one example from the CyBOK 
LaTeX source - rendering both of them failed without useful error messages. Consider 
investigating further whether Extension:PGFTikZ can be used for rendering TikZ figures. 

6.6.2 Pandoc 

TikZ environments embedded in LaTeX are by default omitted by Pandoc. There is a 
StackOverflow suggestion as to how to implement TikZ conversion to PNG as a Pandas Lua 
extension, utilizing ImageMagick. This may be feasible, but for CyBOK Wiki, the produced PNG 
image must be subsequently uploaded and ingested to MW, and embedded to the related Page, 
to the correct place. As the upload and ingest process is handled by python modules, not Pandoc, 
using Python instead of Pandoc to manage TikZ rendering may be more practical. 

6.6.3 Python 

Similarly to the above Pandoc example, a Python preprocessor could be used to manage TikZ 
rendering, which runs before Pandoc conversion - so by the time the LaTeX source reaches 
Pandoc, it converts an embedded image, not a TikZ expression. 

https://www.mediawiki.org/wiki/Manual:Mathoid
https://www.mediawiki.org/wiki/Extension:Math
https://bitbucket.org/helenrjones/c/src/1e5d762e2252769e693328dde023e202f325039c/content.tex?at=master#lines-862:904
https://www.mediawiki.org/wiki/Extension:PGFTikZ
https://www.mediawiki.org/wiki/Extension:PGFTikZ
https://imagemagick.org/


Wiki   |   Feasibility Study 

16 
 

• Find and extract {tikzpicture} environment in LaTeX source by TexSoup. 

• Embed the extracted TikZ expression in a minimum LaTeX template, including necessary 
LaTeX boilerplate to make it a valid standalone LaTeX file. 

• Render the (temporary) standalone TikZ LaTeX file, by ImageMagick to PNG. 

• Capture and upload the PNG file as media file into MW (use TikZ caption as file name 
and/or descriptor). 

• Embed the uploaded PNG file into the LaTeX source in the place of the original 
{tikzpicture} environment. 

• If ImageMagick does not fare well in TikZ conversion (as indicated by some) consider 
using latex2pdf (or whichever LaTeX to PDF converter is used reliably already by the 
CyBOK project) to convert the standalone TikZ LaTeX file to PDF, upload and embedding 
of this PDF as any with any other PDF attachment (see the chapter 6.8 PDFs as 
illustrations). 

As mentioned in the earlier chapter 6.2 Manual tasks in the automated pipeline, if the use of TikZ 
illustrations are rare and isolated, we can consider not automating their conversion, and reverting 
to manually converting, uploading, and embedding them to the relevant pages. 

6.7 Indices, acronyms, glossary (and references) 

CyBOK makes heavy use of index elements, acronyms and glossary items (henceforth referred to 
collectively as IAGs), which - along with sections, illustration and table labels, and respective 
references - make CyBOK a thoroughly interlinked document. In the CyBOK PDF, they are rendered 
as lists at the end of KAs or the book, while their inline representations are rendered as hyperlinks 
that link to the respective definition in these lists. Index elements are not rendered in text: they are 
marked as anchor points in text without any text element. Their alphabetic lists are rendered at 
the end of the KA or book, with the associated page numbers rendered as hyperlinks. 

CyBOK Wiki, being a web portal, can make excellent use of the linked nature of IAGs: they have 
the potential to improve UX significantly. Having said that, PDFs and web portals are substantially 
differing media, specifically regarding their hyperlinking capabilities and good practices. 
Consequently, the functionality, roles and display of IAGs in CyBOK Wiki should be thoroughly 
reassessed, considering www and MW-specific UI/UX opportunities and best practices, as well as 
SEO, and accessibility. In the following, some of these considerations are presented. 

6.7.1 Create dedicated pages for acronym and/or glossary item. 

On these pages - apart from the title and definition - a list of backlinks [regarding implementation, 
see: 1, 2] to pages that refer to these IAGs (e.g.: "Related topics") can be displayed, making it easier 
to discover CyBOK based on cross-cutting topics. 

IAG MW pages could be implemented in dedicated (custom) namespaces for indices, acronyms 
and glossary items. Namespaces are separately templateable, it is easy to implement distinct 
page, aggregation, search, etc. functionality for them. Namespaces are by default explicitly 
prefixed in URLs, e.g.: .../wiki/Glossary:cyberspace or .../wiki/Acronym:IoT, whereas regular 
articles are by default without a namespace prefix. 

https://imagemagick.org/
https://imagemagick.org/
https://stackoverflow.com/questions/64416198/imagemagick-convert-from-tikz-figure-produces-weird-result
https://www.mediawiki.org/wiki/Help:What_links_here
https://www.mediawiki.org/wiki/API:Backlinks
https://www.mediawiki.org/wiki/Manual:Using_custom_namespaces


Wiki   |   Feasibility Study 

17 
 

6.7.2 Acronyms as tooltips 

While glossary descriptions may be several sentences in length, the phrases or concepts that 
acronyms refer to are typically only a few words long. Acronyms could therefore be rendered such 
that when the user hovers on (or taps on on their mobile device) them, a hovering tooltip with the 
full definition appears. This way, the acronym can be disambiguated without the need to navigate 
away from the article where they are mentioned. 

Acronym tooltips could be implemented instead of or in addition to the dedicated MW page for 
the acronym disambiguation. Dedicated acronym pages would still be useful for providing 
backlinks to all articles/pages that mention them, and for SEO purposes. 

6.7.3 Metadata enrichment with indices 

Index items are not rendered in text as they only mark anchor points in text - they do not mark any 
text element. As such, they would not explicitly appear in MW articles. (Conceivably, they could be 
displayed as a list of relevant index words for each MW page, or perhaps at the end each 
paragraph if this is deemed useful.) 

Indices, however, are the most widely used type of IAGs throughout CyBOK. In the Law and 
Regulation KA alone there are 2757 \index{} elements. Indices essentially offer a high-quality, 
paragraph (even sentence)-level) human-curated annotation of the entire CyBOK for the most 
relevant topics mentioned. 

Instead of displaying indices in-line, we could extract them and associate them with MW pages 
(or even sub-units of pages like subsections, paragraphs, even sentences) as MW metadata. This 
metadata could then enable a number of UX-enhancing functionalities in MW, e.g.: 

• Recommendation engine: related articles could be recommended for each page, where 
articles that share the most indices with the page viewed is in the top of the list. 

• Search engine: metadata coming from indices could be fed into the MW search engine for 
better results [regarding implementation, see: 1, 2]. 

• Data analysis and visualization: not (necessarily) directly related to or implemented in MW, 
but the association of indices as metadata with CyBOK (sub)sections can enable all sorts 
of structured research on CyBOK, e.g.:  

o topic cluster analysis, 

o ontology building, 

o index topics graph visualization, etc. 

• Index list page: an index list page, listing all indices appearing in CyBOK and their 
associated MW articles could be implemented - this can be an interesting point of entry 
into CyBOK for users who browse the resource without a specific aim. 

• Quality assurance services: indices as metadata could be used to develop internal QA 
reporting services (probably) independently of MW as python scripts) where the use of 
indices could be tested against the body of text. For example: see if the text appearing 
around indices indeed mention the indexed concept, or vice versa, to search the text for 
each index element to find text occurrences where the index is not applied. 

https://www.mediawiki.org/wiki/Page_metadata
https://www.mediawiki.org/wiki/Extension:CirrusSearch
https://www.mediawiki.org/wiki/Category:Search_extensions


Wiki   |   Feasibility Study 

18 
 

While indices are the most used IAG, metadata can be further enriched with acronyms and 
glossary items in the same fashion. 

Extracting indices and associating them with MW pages as metadata could be implemented as 
part of the python preprocessing and submission pipeline, while MW-specific logic 
(recommendation, search, index list page) as custom MW Extensions. 

6.7.4 References 

Similarly to IAGs, references are also represented as structured data in LaTeX, with inline \ref{} 
expressions and reference details sourced from separate .bib files. References are - to a limited 
degree - reused across (sub)sections and perhaps across KAs. Thus, in addition to their primary 
intended function, references could also be used as IAGs: they could have dedicated pages, linked 
from the bibliography, with backlinks for discovering related pages, as well as links added to the 
original publications (where available), or to prepared search query URLs to academic literature 
search engines such as scholar.google.com or Scopus. Conceivably, bibliographic information 
such as authors or journals of references could further enrich metadata, allowing for more data 
analysis (e.g.: topics or sections associated with authors and journals, enabling all sorts of 
subsequent bibliometric analysis). 

6.8 PDFs as illustrations 

Some illustrations are included in CyBOK as PDFs. In the three KAs that this exploratory project is 
concerned with, only one such case exists (Figure 1 in Adversarial Behavior KA). If indeed there 
are only a handful of such illustrations in the entirety of CyBOK, we can consider not automating 
their inclusion to CyBOK Wiki (see chapter: 6.2 Manual tasks in the automated pipeline of this 
document), as automating this process is quite complicated, as outlined in the following. 

6.8.1 Setup process 

• MW is installed by default (at least in its official Docker release) with Extension:PdfHandler 
enabled. This Extension converts PDF files to JPG for embedding into articles. 

• Extension:PdfHandler has external dependencies, ghostscript, imagemagick and xpdf-
utils. These need to be installed (imagemagick is installed by default in the official MW 
Docker image). Once they are installed, the Extension integrates with them out-of-the-box 
without further setup needed. 

• PDF files must be allowed for upload in MW settings by adding $wgFileExtensions[] = 
'pdf'; to LocalSettings.php 

6.8.2 Automation process 

• Identify and isolate the \includegraphics[]{} LaTeX expression with the TexSoup python 
preprocessor, and extact the file name from the curly brackets. There is no need to 
manipulate the expression. 

• Rebuild the absolute path of the file. 

https://www.mediawiki.org/wiki/Manual:Developing_extensions
https://www.mediawiki.org/wiki/Extension:PdfHandler
https://www.mediawiki.org/wiki/Extension:PdfHandler


Wiki   |   Feasibility Study 

19 
 

• Use Python requests and the MW API to upload the file. The upload script must have the 
token of a logged-in user (files must be owned by a user, so even if we allow anonymous 
users to upload files, it will not work) 

• \includegraphics[]{} is by default converted to an internal link to the file by Pandoc, e.g.: 
[[AttackTree.pdf]]. With Extension:PdfHandler properly configured, this the desired 
image will be rendered by MW instead of the hyperlink text. We must however specify an 
image width, otherwise the image is displayed too large (does not fit the viewport). The 
syntax is the following: [[File:AttackTree.pdf|page=1|600px]]. The necessary 
arguments can be added with a Lua filter, (e.g.: if link ends in ".pdf"), or can be 
circumvented with custom MW CSS. 

Note: the above steps have been manually verified but have not implemented them in the software 
proof-of-concept. 

6.9 To-dos 

Below is a list of miscellaneous technical to-do items for the implementation of CyBOK Wiki 
beyond the proof-of-concept. The list is not prioritized and the order of items has no significance; 
we added them to the list as we happened upon them. The list is by no means exclusive. 

The proof-of-concept's source code also includes a large number of # TODO items which may be 
relevant, however, these are more directly tied to the current implementation of the proof-of-
concept. 

• Change the LaTeX CyBOK source such that \labels would move above or in-line with the 
labelled expression, so clicking on the generated HTML anchors links would jump above 
the named item, making it visible. 

• Glossary items are case-sensitive. To render sentence-beginning glossary items that are 
maintained on record with lower case, \Gls instead of \gls is used. This behavior is not 
supported by Pandoc, so the resulting MW markup results in a lower case sentence 
beginning. 

• The \begin{framed} LaTeX environment, resulting in PDF as a bordered textbox (see 
example), is not supported by Pandoc by default, the resulting MW is <span 

class="framed">CONTENT</span>. Consider either 

o using a python preprocessor to change the environment to another fitting one that 
Pandoc can render, 

o implementing a Pandoc Lua filter to associate the environment with a fitting MW 
formatting style (e.g. <blockquote>), 

o implement custom MW CSS to display the environment as desired. 

o leave as-is and lose framed textboxes in CyBOK Wiki. 

• Formatted text or special character tags in (sub)section headings gets removed or 
incorrectly converted by the python Segmenter (or Pandoc?). For example: 

o \subtopic{\emph{De minimis} exceptions to crimes against information systems} results in the 
MW page title "Exceptions to crimes against information systems". Or 

https://www.mediawiki.org/wiki/API:Upload
https://bitbucket.org/helenrjones/lr/src/71c2527b100a83f80f8953c7ab64776e3b7f16c5/content.tex#lines-576:578
https://bitbucket.org/helenrjones/lr/src/71c2527b100a83f80f8953c7ab64776e3b7f16c5/content.tex#lines-835


Wiki   |   Feasibility Study 

20 
 

o In \subtopic{Breach of contract \& remedies}, the & character doesn't get escaped, 
resulting in the MW page title Breach of contract \& remedies 

o (While investigating this, we came across subsection title "Σ-Protocols" 
(Cryptography KA subsection 9.3.1), which gets converted to a correct heading by 
Pandoc, but in the CyBOK PDF, in the PDF bookmark list, the Σ is omitted.) 

• \fullref is consistently omitted, even though it should be supported by Pandoc. See for 
example in KA-final cross-reference tables. 

• The Cybersecurity KA final cross-reference table is converted to invalid MW markup, while 
the similar table at the end of the Adversarial Behaviour KA rendered correctly. 

• Implement proper MW citations with ieee.cls, yielding a nicer view and more functions, 
similar to how notes already work. Use Lua to format in-line, citation points and a python 
preprocessor (or postprocessor)? to add References heading and bibliography data at the 
bottom of pages. Interfacing directly with .bib files using the bibtexparser python library 
may be necessary for the preprocessors. 

• References to tables should work, e.g.: Table~\ref{tab:ka_law:standards} should link here. For 
this, Pandoc generates a broken MW link [[tab:ka_law:standards]] as if the table were a 
MW page. Instead, it should generate a link to the subsection that hosts the table 
(subsection "A more holistic approach to legal risk analysis"), with an anchor link to the 
table (correct MW markup: [[sect:ka_law:holistic#tab:ka_law:standards|Example 

standards of proof]]) To implement this the python preprocessor should extract the 
(sub)section IDs where a table belongs, and, find the \ref{} references to the table and 
replace their reference attribute as section_id#table_id. 

• Table descriptions are sometimes omitted during conversion, see e.g.: Cybersecurity KA, 
Figure 1. 

• Citations that in the CyBOK PDF appear aligned right in a separate row at the beginning of 
KAs or main sections not aligned right nor displayed separate row in CyBOK Wiki (see 
Appendix for example). 

• Some in-line math expressions are not properly separated from the word before or after 
them (see Appendix for example). 

• LaTeX {array} and {eqnarray*} environments are not rendered at all, the reason for this 
needs to be further investigated. 

7. Open questions 

In this chapter, we provide a detailed discussion of open questions that must be considered, 
debated and eventually answered to enable moving forward with the implementation of CyBOK 
Wiki beyond the proof-of-concept. 

https://bitbucket.org/helenrjones/lr/src/71c2527b100a83f80f8953c7ab64776e3b7f16c5/content.tex#lines-1052
https://bitbucket.org/helenrjones/c/src/137df867b70125b084c9a3627e11547f241c7b58/content.tex#lines-1998
https://tex.stackexchange.com/questions/282583/how-to-change-pandocs-hyperrefs-reference-format
https://www.mediawiki.org/wiki/Help:Cite#Separating_references_from_text
https://bitbucket.org/helenrjones/lr/src/71c2527b100a83f80f8953c7ab64776e3b7f16c5/content.tex#lines-160
https://bitbucket.org/helenrjones/lr/src/71c2527b100a83f80f8953c7ab64776e3b7f16c5/content.tex#lines-225


Wiki   |   Feasibility Study 

21 
 

7.1 Which CyBOK PDF (sub)sections should be segmented into 
CyBOK Wiki pages? 

CyBOK is a heavily hierarchical document. KAs are divided into section, subsections (and further 
smaller units). In LaTeX, this is achieved by the commands \section{}, \subsection{}, and 
\subsubsection{}, as well as their CyBOK-specific synonyms \topic{} and \subtopic{} (all of 
these henceforth collectively referred to as (sub)sections).  

In the CyBOK PDF, these expressions are rendered as hierarchical headings, prepended with 
incrementing section numbers (and sub-numbers for lower hierarchy elements, subsections), and 
are fed into the document's Table of Contents (ToC). Asterisked commands (e.g.: \section*{}) 
form an exception: they are rendered with the same style as their asteriskless counterparts, but 
without numbering. 

In LaTeX, (sub)sections may have related \label{} expressions. \label{}s label any point in a 
LaTeX document with a unique label (not rendered), and thus the labelled point can be referenced 
to from other parts of the document. For example, if the text in Section A makes a reference to 
subsection B.C, section B.C needs a label so the reference to it can be rendered (as a hyperlink). 
Not all (sub)sections have a related \label{} expression - these are not referenced to by other 
parts of the text in CyBOK (but they still get assigned a section number and appear in the ToC). 

To take advantage of CyBOK's heavily hierarchical nature, (sub)sections can be implemented in 
MW as separate pages that link to one another. Here we discuss possible strategies and 
considerations regarding how this could be implemented: 

Pages should not be too short, or too long: It is not the task of this project to propose an ideal 
(and minimum, or maximum) length of MW pages. However, if such guidelines are to be set, they 
can help inform the decision about the segmentation strategy. The segmentation strategy of 
Wikipedia may be of use. 

Knowledge Area page: KAs are not marked by the above sections system: they are the top level in 
CyBOK hierarchy (apart from KA groups) and are segmented into LaTeX project folders. Those 
texts of a KA that are not segmented into (sub)sections should belong under the KA's page - a KA 
landing page of sorts - along with links to the (sub)sections belonging to the KA. 

Every (sub)section with a label becomes a page: This is the practical minimum strategy to divide 
(sub)sections into pages. (Sub)sections that have labels may have other parts of the text make 
reference to them. These references should appear in CyBOK Wiki as hyperlinks - to the dedicated 
page of the referred (sub)section. 

Every (sub)section becomes a page (even ones without a label): Unlabelled (sub)sections are not 
referenced by other parts of CyBOK, but they can still be segmented into dedicated pages. This 
way, while browsing CyBOK Wiki, the reader may open these sections interesting to them for later 
reading in new browser tabs, reference these sections directly in their own work, share them 
directly in emails or social media, etc. 

Auxiliary (asterisked) (sub)sections do not become pages: Similarly to the CyBOK PDF, these 
pages may not need to be segmented into dedicated pages. Typical examples: Introduction, 

https://en.wikipedia.org/wiki/Wikipedia:Article_size
https://en.wikipedia.org/wiki/Wikipedia:Article_size


Wiki   |   Feasibility Study 

22 
 

Conclusion, Cross-reference tables, or Further reading logically belong to their parent section's 
page (typically the KA page) (this is not implemented in the proof of concept). 

Avoiding very short pages: Some sections have very little content on their own as they mostly 
serve as a collection for other subsections. See for example Law and regulation KA section 11, 
with only one content sentence before its subsections begin: 

 

We could consider not creating separate pages for such sections as such small pages with no 
substantial content offer little value to the user. How to identify and handle such cases, however, 
is not a trivial question. 

• Automatic identification of short pages: this could be achieved with the Python TexSoup 
preprocessor (i.e.: by counting the word length of the page after the segmentation and 
identifying ones under a certain threshold), however, this may not be optimal: in certain 
cases, short pages might be justified. 

• Manual identification of short pages: the CyBOK LaTeX standard could be expanded by 
redefining the (sub)sections commands with a new optional parameter that would indicate 
that the (sub)section must not be segmented into a page. This parameter would not have 
any effect in rendering the CyBOK PDF, it would work only for CyBOK Wiki. Parsing this 
argument would be implemented as a Python preprocessor. 

• Embed short section in their parent's page: instead of creating a dedicated page for short 
contents, they could be embedded to their parent's page. 

(Sub)sections that do not become pages should be converted into headings: MW automatically 
assigns heading elements with a unique HTML id, making them linkable as anchors inside their 
parent page. 

7.2 Extracting (sub)chapter titles and identifiers 

As described above, (sub)section titles may have related \label{} LaTeX expressions that label a 
certain point in the document that can then be referenced from other points in the document using 
\ref{}. In other words, when referencing a section, the (sub)section titles are not referenced 
directly, rather the accompanying label is referenced. The (sub)section title and label do not 
necessarily belong together: (sub)sections can be defined without a label (see above) and labels 
can be placed anywhere in the document. 

The way (sub)section titles and labels are used together in CyBOK is not defined or consistent. 
Sometimes labels follow (sub)section titles directly: 



Wiki   |   Feasibility Study 

23 
 

\topic{The Elements of a Malicious Operation} 

\label{sect:elements} 

while in other instances there are \index{} expressions separating the (sub)section title and the 
corresponding label (and we expect further variations may exist in other KAs): 

\topic{Information-theoretically Secure Constructions} 

\index{information-theoretic security} 

\index{information theory} 

\label{crypto:sec:IT} 

Linking (sub)section titles with labels is a crucial task: (sub)section titles are the expressions that 
segment the LaTeX source into MW pages and their values become the title of these pages (as 
well as the primary identifier of them, in MW), but references to them in the LaTeX source are 
made by the label. We can only retain linkages between in-text references to pages and the 
referenced pages if we can make a linkage between (sub)section titles and labels. However, for 
the above described lack of standardization in the use of (sub)section titles and labels makes it 
hard to reliably associate them with one another. 

For this reason, we recommend that the LaTeX source is changed such that label expressions are 
embedded in the (sub)section title expressions, e.g.: 

\topic{The Elements of a Malicious Operation\label{sect:elements}} 

This way the relationship between the (sub)section title and label is inseparable and 
unambiguous. Identifying and maintaining these linkages in a python preprocessor and 
subsequently using them for reference preparation, metadata addition, etc. is a straightforward 
task with the TexSoup library. 

This proposed standard does not change the rendering of the CyBOK PDF in any way but is crucial 
to one of the core innovations of CyBOK Wiki: segmenting (sub)sections into dedicated MW 
pages. 

To demonstrate the software proof-of-concept's in-text cross-reference capabilities the LaTeX 
changes proposed here have been implemented for the Adversarial Behaviors and Cryptography 
KAs, see data/ab/content.tex and data data/c/content.tex, respectively. The LaTeX source of 
the Law and Regulation KA has not been altered, consequently, cross-reference links are broken 
for this KA. 

7.3 How to implement and display CyBOK's structure in MW 
pages? 

Structure in the CyBOK PDF (and the underlying LaTeX source) is implemented by separate LaTeX 
projects (for KAs) as well as (sub)sections in LaTeX files. These are then rendered in text as 
numbered (sub)headings, chapter indicators in PDF page footers, table of contents, and PDF 
bookmarks. These are logical and practical ways of implementing and displaying structure for the 
PDF format and print, but not necessarily best practice (or feasible) for a web portal such as MW. 
MW is not an intrinsically hierarchical platform in terms of how it manages pages, but it offers 
several ways to implement hierarchical page relations. In the following, we discuss the following 
considerations for implementing and displaying different levels of structure in CyBOK Wiki. 



Wiki   |   Feasibility Study 

24 
 

7.3.1 Namespaces 

Namespaces by design separate content pages from other kinds of MW pages such as MW users' 
profiles, files, or discussion pages. However, custom namespaces may be defined - these could 
be used for one level of structure of CyBOK Wiki. Namespaces are individually templatable - if this 
is deemed useful for CyBOK Wiki, they should be considered. However, they only offer one level 
of namespacing, thus are not ideal for structuring the multi-level hierarchy of CyBOK. Perhaps it 
may be useful for the highest level (KAs). 

7.3.2 Categories 

"Categories provide automatic indexes that are useful as tables of contents. You can categorise 
pages and files by adding one or more Category tags to the content text. These tags create links 
at the bottom of the page that take you to the list of all pages in that category, which makes it 
easy to browse related articles." 

With this, categories might be the most fitting solution to structuring CyBOK Wiki. They are 
hierarchic, an integral concept to MW, and offer display mechanisms by default. Semantically, 
category is not the same as sections as they appear in CyBOK, and the functions that Categories 
provide might not be all sufficient (or relevant to) CyBOK Wiki, but it might still be the ideal concept 
to base CyBOK's hierarchy on. 

Instead of Category pages (displaying a list of pages in a category, without any content), could be 
considered. With this extension, a collapsable tree of the (sub)categories, and the pages 
belonging to them can be rendered automatically. This could be embedded to pages that have 
related (sub)chapters. 

7.3.3 Subpages 

"Subpages introduce some hierarchical organization into wiki pages, with levels of the hierarchy 
separated by slashes (/)." 

By default, subpages are disabled for the main Namespace (where content pages exist), but it can 
be enabled. With this, namespaced URLs may be implemented, e.g.: 
.../wiki/Law_and_Regulation/Jurisdiction/Territorial_jurisdiction, which may be deemed 
necessary to provide users context on the URL level (or the opposite: it may be found to be too 
verbose). Subpages offer breadcrumbs (see for example here). Built-in templating functions can 
be used to  display all subpages of any page. MW documentation suggests that Categories are in 
general better suited for organizing hierachical information, so subpages should be considered 
primarily for their verbose URLs. 

7.3.4 Embedding child sections 

Embedding the contents of child sections into the parent page can be considered (in addition to, 
or instead of linking to the child page). It can be implemented in MW on the templating level simply 
by referring to a section with a special syntax. With this, when opening a parent page (perhaps 
even the page of a whole KA), all of its contents would be rendered and could be browsed without 
having to move away of open separate tabs. The utility of this is questionable: this will essentially 

https://www.mediawiki.org/wiki/Manual:Namespace
https://www.mediawiki.org/wiki/Manual:Using_custom_namespaces
https://www.mediawiki.org/wiki/Help:Categories
https://www.mediawiki.org/wiki/Help:Categories#Managing_the_category_hierarchy
https://www.mediawiki.org/wiki/Help:Subpages
https://www.mediawiki.org/wiki/Help:Subpages/subpage/sub-subpage/en
https://www.mediawiki.org/wiki/Help:Subpages#h-Displaying_subpages
https://www.mediawiki.org/wiki/Help:Subpages#Use_of_subpages
https://www.mediawiki.org/wiki/Transclusion


Wiki   |   Feasibility Study 

25 
 

result in duplicate content on the front end (this can be confusing for users and potentially 
detrimental to SEO), and may result in undesirably long pages. If implemented on the KA level, the 
added value of CyBOK Wiki (compared to the original CyBOK PDF release) is arguably diminished, 
as it essentially reduces the segmentation that Wiki enables. With all that said, embedding can be 
considered for certain cases (perhaps individual cases). 

7.3.5 Displaying structural elements 

In addition to the above possibilities, other structure indicating UI elements such as breadcrumbs, 
sidebars, info boxes, etc. may be considered. Either way, on each page, the following related pages 
should be linked to in some way: 

• parent (sub)section 

• child (sub)section(s) 

• previous section and next section (as if turning pages in the CyBOK PDF) 

• (sibling sections?) 

These may have to be implemented in MW templating as custom functionality, depending on 
which one of the above options is selected. 

7.3.6 Namespaces in URLs 

By default, the title of a MW page is also the unique part of the MW URL to that page. CyBOK may 
have (sub)sections that share with another (sub)section across the 22 KAs (e.g.: Conclusions). 
For such cases at least, some namespacing should be added in the URL, otherwise one or the 
other (sub)section will be overwritten. We consider Subpage's above described approach, or 
Wikipedia's disambiguation convention, e.g.: Flash (DC Comics character) and Flash (lake). 

In any case, we may want to include some namespacing to URLs to give context to the topic. E.g.: 
section 9.1.3 Conceptual Models is an ambiguous title. We may want to add the KA's title for 
context (e.g.: Conceptual Models (Forensics)). At the same time, adding the KA title as context to 
all titles may in cases prove superfluous and repetitive, for example consider: "Why is risk 
assessment and management important? (Risk Management and Governance)". 

We can thus see that deciding whether the KA's title should be added to a page's URL for context 
is neither trivial nor easy to automate. With this in mind, we can consider changing the CyBOK 
LaTeX standard by adding an optional parameter to (sub)section LaTeX expressions that indicate 
whether the parent KA's title should be included in the URL (and perhaps the page title?) for 
namespacing (without any behaviour when rendering the CyBOK PDF.) 

7.4 How to display section titles? 

In the CyBOK PDF, (sub)section titles are automatically assigned an incremental unique section 
number, e.g: 3, 3.1, or 3.1.3, etc. based on the hierarchic depth and the order of the (sub)section 
(except for asterisked auxiliary sections like \section*{}. Section numbers are automatically 
prepended to (sub)section titles and their corresponding table of content entries and PDF 
bookmarks. Section numbers are also used when referring to (sub)sections in-text - in this case, 

https://en.wikipedia.org/wiki/Flash_(DC_Comics_character)
https://en.wikipedia.org/wiki/Flash_(lake)


Wiki   |   Feasibility Study 

26 
 

only the section numbers are rendered. E.g.: In the Cryptography KA the section Standard 
protocols is assigned section number 8, so the section title is rendered "8 Standard protocols", 
reference to this section may be made by the LaTeX fragment in Section 

\ref{crypto:sec:protocols} we discuss which will be rendered simply as "in Section 8 we 
discuss". 

Unlike a PDF, a Wiki is a non-linear medium, and CyBOK (sub)sections are written in such a manner 
that they may be - to a large extent - read in a non-linear order. Therefore, in CyBOK Wiki we do not 
necessarily have to maintain section numbering (implying that there is an order amongst sections) 
and instead may always render only the (sub)section's title. 

This is a straightforward change to implement for MW page titles, but in-text references offer a 
bit more nuanced dilemma. Throughout CyBOK, the text is edited so that section references are 
always referred to as "Section NUMBER" (i.e.: the number is always prefixed with "Section"). The 
question must be asked whether switching the numbers to the corresponding (sub)section's title 
will reliably leave the text logical and easy to read. To this end, the following considerations are 
offered: 

• The references will be visibly differentiated because of the hyperlink - this should be of 
help with readability. 

• Quotation marks around the referenced (sub)section title could be added to further ease 
readability (see examples below). 

• The Section prefix of references could be altogether removed. From a technical 
perspective, this is bit more complex to implement: in a python preprocessor, \ref{} 
expressions must be isolated and the preceding text block altered if it ends with the word 
"Section". 

PDF original 
 

like PDF original ...explained in Section 7.2... 

with number and title ...explained in Section 7.2 "A Characterisation of Adversaries"... 

only title ...explained in Section "A Characterisation of Adversaries"... 

removing Section prefix ...explained in "A Characterisation of Adversaries"... 

All of the above is valid also to the titles of and references to figures, tables, illustrations, etc. 

7.4.1 Numbering level 

In the full CyBOK PDF release (that is, the >1000 pages long PDF release with all KAs), the first 
number of the section number is the number of the KA in the order as they appear (e.g.: 10.5.2 
Message Authentication Codes on page 336). In the separate KA PDF releases, the KA number is 
omitted and only the (sub)section numbers are used (e.g.: 5.2 Message Authentication Codes on 
page 17). If section numbering is retained in CyBOK Wiki, decision must be made whether to use 
the full or KA-level section numbering. 

https://www.cybok.org/media/downloads/CyBOK_v1.1.0.pdf#subsection.10.5.2
https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf#subsection.5.2


Wiki   |   Feasibility Study 

27 
 

7.5 Migrating LaTeX metadata to MediaWiki 

CyBOK KAs have related metadata that in the CyBOK PDF are mostly rendered on the title page 
and following lead-in pages, including: 

• Title, 

• Version, 

• Author(s) and their affiliation(s), 

• Editor(s) and their affiliation(s), 

• Reviewer(s) and their affiliation(s), 

• Copyright information, 

• Changelog, 

• Release month and year (in page footers). 

These metadata are not defined in the main content LaTeX file, rather in separate LaTeX files, as 
well as LaTeX class and style files, along with their complicated design definitions. 

Extracting these metadata in an automated manner is feasible by implementing custom python 
TexSoup processors that interface with these files and isolate and extract the metadata, and 
subsequently feed it into the main python preprocessing and segmenting processes. While this is 
feasible, this is a relatively complex undertaking, given the unique and formatting-heavy definition 
of each of these metadata, especially considering that the automation runs only 22 times (i.e.: for 
each KA). We may consider extracting these metadata manually, maintaining them in an easy-to-
process structured format (e.g. in yaml files) for each KA (see chapter 6.4 KA-specific 
functionality). 

If KA metadata is extracted, we must consider how MW should display or otherwise use them. 
These metadata describe KAs in the CyBOK PDF, however we might consider adding them to each 
page that belong to the KA. The could be displayed in an Infobox, or in the page footer. The 
concept and function of CyBOK Wiki differs from most MW use cases (that is, open encyclopediae 
like Wikipedia) that do not (explicitly) display much of the above metadata, so finding the most 
fitting display of them will require dedicated UX/UI design effort and implementing them might 
require custom templating work. 

These metadata can also be used to enrich MWs interactive functionality such as search or 
recommendations – see more on this in subchapter 6.7.3 Metadata enrichment with indices of 
this document. 

In addition to KA-specific metadata, consider also additional CyBOK wide metadata (that this 
exploratory project does not access the LaTeX source of), such as the names of CyBOK-level 
editors, project managers, production personnel, professional and academic advisory board 
members, steering committee members, etc. 

https://en.wikipedia.org/wiki/Infobox#Wikipedia


Wiki   |   Feasibility Study 

28 
 

7.6 Versioning 

If CyBOK Wiki is implemented and successful, eventually new versions of CyBOK may be released 
on it. This is a more distant concern than others mentioned in this document, but it is one that 
should be considered already at the inception of CyBOK Wiki. Here we will only outline some 
issues and possible ways to tackle them, without going into much detail. 

7.6.1 Are older versions of CyBOK Wiki to be retained? 

The answer is probably yes: the older version of the CyBOK PDF (v1.0) is still available for 
download, as indeed it may be referenced and relied on by existing resources. There is no reason 
why the same consideration should not apply to CyBOK Wiki. 

7.6.2 Namespacing as versioning 

We have discussed the issue of namespacing regarding structuring, above. The Namespace 
concept of MW might be used for versioning, such that each page's URL belonging to a version 
would be prefixed with the version number. Ideally, version URL namespacing should be added 
already at the first ever release, so when a subsequent release is made, the older URLs do not 
need to be changed (to guarantee link longevity without having to maintain a complex redirecting 
functionality). 

7.6.3 Continuity 

Like with any versioning, it would be practical to show users visiting older pages that a newer 
version of the page is also available. This is only possible if a connection is made between old 
and new versions of the same page. This is feasible if pages (or rather, their underlying LaTeX 
code) have persistent and uniquely identifying features - which currently they do not. The labels 
of (sub)section titles should all be unique (otherwise referencing to them would not work), 
however, they are not guaranteed to persist across versions, and not all (sub)sections that may 
be turned into pages have corresponding labels. We can consider enforcing a stronger, persisting 
use of labels in the CyBOK LaTeX standard, however, the question remains as to what happens to 
restructured (sub)sections (e.g.: (sub)sections' content remains but gets split into several new 
(sub)sections, or several (sub)sections joined in one, etc.). 

SEO must be considered so search engine users would by default always find the most up-to-date 
CyBOK versions, but could also find old versions if need be - this is especially important if no 
continuity between page versions is established. 

8. Conclusions 

The primary question of this study was the technical feasibility of CyBOK Wiki, an automated 
software framework that publishes CyBOK content to a browser-based Wiki system. The proof-of-
concept software framework demonstrate that the general concept of CyBOK Wiki is indeed 
feasible. It produces a browser-based knowledge portal with sufficient UI and UX. CyBOK is 
transferred to WikiMedia with rendered textual formatting, headings, tables, math formulae 

https://www.mediawiki.org/wiki/Manual:Namespace


Wiki   |   Feasibility Study 

29 
 

preserved, references and cross-references included as hyperlinks, and (sub)sections segmented 
into standalone pages. 

The feasibility of key qualities and features expected of CyBOK Wiki is demonstrated: 

• User experience: Basic navigation and cross-references are added, demonstrating 
improved navigation across (sub)sections (compared to the CyBOK PDF). Copying and 
pasting from HTML retains formatting, while doing so from PDF is mostly unsuccessful. 

• Accessibility: MediaWiki ships with a responsive layout out-of-the-box, improving 
accessibility of CyBOK, especially on mobile devices. Cybok Wiki is rendered by MediaWiki 
in standard HTML, much better suited for screen readers than PDF. 

• Discoverability: Cybok Wiki is rendered by MediaWiki in HTML adhering to contemporary 
standards that are preferred by search engines. CyBOK Wiki segments (sub)sections into 
standalone pages - users can link directly to them, rather than KA PDFs only. 

The lessons learned of the development process suggest that the more complex problems beyond 
the scope of the proof-of-concept are also surmountable. Implementing LaTeX-to-MediaWiki 
conversion mechanisms that are not supported by the conversion software Pandoc can be a 
complex task but there are several complementary tools and methods to employ. Rare but 
complex conversion tasks may be left out of automation - how to do this in a sustainable, reliable 
way is discussed in details in chapter 6.1 Tackling LaTeX expressions that are not converted 
correctly by Pandoc. 

In some cases, changing the CyBOK LaTeX source (that the PDF release is also generated from) 
may be the best (or only) solution for solving conversion issues. Changing LaTeX source might be 
the most immediate effect that a prospective CyBOK Wiki project may have on the CyBOK (PDF) 
parent project, and indeed, in case of implementing in-text cross-references between 
(sub)sections, this may be necessary. Strategies and best practices to this end are discussed in 
details in chapter 6.3 Changing the LaTeX source. 

As a first call-for-action, the chapter 7 Open questions outlines issues that must debated and 
answered to implement CyBOK Wiki beyond the proof-of-concept. These questions are mostly 
concerned with how the change of medium from PDF to a web portal affects how we treat CyBOK 
as a structured document, what new functions we want to give it and how we want to present it 
on a new user interface. We finally outline the next technical steps to be taken towards the 
realization of CyBOK Wiki the final chapter below. 

8.1 Risks and limitations 

The results of this feasibility study are promising but the implementation of CyBOK Wiki beyond 
the proof-of-concept is not without risks. 

As discussed the chapter 7.2 Extracting (sub)chapter titles and identifiers, the realization of 
CyBOK Wiki would likely require some degree of interference of the CyBOK LaTeX source code. 
There are no such changes or standardizations foreseen that would impact the appearance or 
functions of the canonical PDF release of CyBOK. However, changes to and standardization of the 
LaTeX code base will require additional work: editing the existing code base (which would not 
concern content, only code syntax or structure) and enforcing new standards to subsequent 



Wiki   |   Feasibility Study 

30 
 

releases. The latter would impact the work of authors and content editors (or in case this was to 
be avoided: create additional work for the maintainer of the LaTeX code base). 

CyBOK is a complex and vast resource. It is written in a complex, dynamic language, LaTeX, 
converted by another complex technology, Pandoc. This complexity makes it difficult to estimate 
resources required for a prospective CyBOK Wiki implementation. The definition of a minimum 
viable product (MVP), establishing clear success indicators and an iterative, agile implementation 
process that involves all relevant stakeholders would be a good strategy to navigate such a 
complex project to success. 

This project has not attempted to create a systematic and comprehensive QA reporting tool that 
would identify and keep track of LaTeX features that Pandoc does not convert (correctly). We 
assume that developing such a tool is itself a complex undertaking. A realistic MVP, clear success 
indicators and a good manual QA testing processes can circumvent the need to create such a 
systematic tool. 

The results and conclusions provided here are limited by the fact that only three of the 22 
Knowledge Areas were accessible to the study. If the study were to be expanded to CyBOK as a 
whole, some of the results or conclusions might differ or indeed fail. The feasibility of this study 
had a technical focus - a successful implementation project would also require strategic, 
operational, editorial, managerial, organizational, financial, etc. planning. 

9. Next steps 

In this final chapter we outline a list of further steps to consider when planning and implementing 
CyBOK Wiki beyond the proof-of-concept. Again, we only focus on technical aspects. 

• Continue the exploratory research on the remaining 19 KAs. Expand the proof-of-concept 
software to explore the feasibility and fitting strategies for new findings. Define additional 
(and refine existing) technical considerations and open questions. 

• Design a systematic, deterministic, precise and (to the extent that it is possible) automatic 
workflow to track conversion quality, as well as omitted, or incorrectly converted LaTeX 
features. This could be the backbone of CyBOK Wiki's quality assurance mechanism 
against the canonical PDF release. 

• Select and apply a suitable UX/UI/Service design methodology to plan and design CyBOK 
Wiki. Prospective users' needs should not be assumed but be researched systematically. 
It is important to keep in mind that CyBOK Wiki should not just be a browser-based clone 
of the CyBOK PDF - it is a new medium and service with other functions, use cases, risks, 
and limitations than a PDF release. CyBOK Wiki is a chance to rethink what CyBOK is, and 
what else it may become. 

• Consider building the CyBOK Wiki conversion pipeline upon the proof-of-concept, or design 
a new architecture potentially reusing snippets from the proof-of-concept. 

• Create plenty of unit tests. One way of guaranteeing consistent and reliable conversion 
results as the number of pre- and postprocessors custom Lua filters and potentially other 
conversion tools grow. Test python units separately, but also consider creating integration 
tests with complex LaTeX test snippets. 



Wiki   |   Feasibility Study 

31 
 

• Debate and answer open questions gathered in this document (and new ones that further 
research might yield). These will inform the process of defining and designing CyBOK Wiki 
as a platform and as a service. 

• Define the requirements for a MVP and create a prioritized task list. 

• Consider an agile method for developing CyBOK Wiki beyond the proof-of-concept. 
Establish the whole conversion pipeline and platform early to be able to assess results 
early and often. Estimating the resource intensity of implementing the conversion of 
different LaTeX phenomena is difficult; seemingly straightforward concepts might prove 
to be deep rabbit holes, while other objectively complex cases might be handled by Pandoc 
seamlessly. Therefore, an agile method would be useful to be able to change priorities of 
an MVP during the project and remain efficient and effective. 

• Harden MediaWiki. CyBOK Wiki will not be the typical MW use case in that it will most likely 
not have an open collaborative element, therefore much of MW's functionality will not be 
used. For the benefit of security and UX, disable every functionality that does not serve 
MW's use case, both on the frontend and the backend. After content ingestion, disable also 
all functionalities that were used for content ingestion, for example the API. 

• Consider methods of data collection on the usage of CyBOK Wiki in a manner that provides 
CyBOK editors with valuable insights, but without tracking individual users. 

• The development of CyBOK Wiki requires the methodological and meticulous probing and 
processing of the CyBOK LaTeX code base. This provides for the emerging opportunity to 
create (at low additional cost) auxiliary quality assurance reporting scripts, linters, or even 
semantic, syntactic or bibliometric analysers of the CyBOK code base and body of text. 
Consider seizing these opportunities. 

 





Browser screenshot displaying the entire MW interface. Section headings appear in the sidebar automatically.

CyBOK Wiki



The segmentation process isolates 118 
(sub)sections across three KAs and uploads them 
as MW pages. Page titles in italics are redirect 
pages, facilitating hyperlinked in-text references.

This document’s other chapters discuss 
segmentation strategies, section titles and the 
structuring of MW pages into a logical, easy-to-
navigate online resource, in detail.

CyBOK Wiki



CyBOK PDF CyBOK Wiki

Basic text formatting is converted, e.g.: bold, italics, bulletpoints, paragraph breaks, headings.

In-line citations [1] are converted as hyperlinks, pointing at the bibliography at the end of each page.



CyBOK PDF CyBOK Wiki (as implemented)

Bibliographies are generated automatically at the end of each page, with IEEE style. Only those bibliographic elements 
are included that have references to on the page at hand, so  bibliographies on each page are shorter than the several 
hundred strong bibliographies at the end of CyBOK PDF KAs.

With proper customization (custom Lua filter and python preprocessor, see to-dos) native WM-style citation can be 
implemented, which look more beautiful and offer more functionality. A proof-of-concept of this has been attempted 
(not implemented in the main functionality and not utilizing Pandoc – this must be reworked).

CyBOK Wiki to-be (with native
MW citation rendering)



CyBOK PDF CyBOK Wiki

Links to other (sub)sections are turned into hyperlinks to their respective pages. Hyperlink texts are the LaTeX 
\label{} values of the linked (sub)sections – this can be changed, as described in detail in chapter "How to display 
section titles?"



CyBOK PDF CyBOK Wiki

Notes1 are correctly referenced and linked in-text and get rendered in the native MW reference style at the end of 
each page (only the ones relevant to that page)

As a proof-of-concept to creating custom Lua filters, acronyms and glossary terms are highlighted in red. Their 
intended functionality is not implemented (or indeed decided, see chapter "Indices, acronyms, glossary (and 
references)")

...



CyBOK PDF chapter CyBOK Wiki

Hyperlinks to parent- and subsections are added to ease navigation across the book.

See chapter "How to implement and display CyBOK's structure in MW pages?" for detailed considerations on how 
to better implement navigation beyond the proof-of-concept.

CyBOK PDF ToC



CyBOK PDF CyBOK Wiki

Math formulae are rendered just like in LaTeX, both in-line and as blocks.

Not everything gets converted to MW markup correctly. For example the chapter leading citations are not aligned 
right in a separate row, and some in-line math expressions are not properly separated from the word before or after 
them (for example:                                    ).

The chapter "Considerations for implementation" is largely about discussing different strategies
to tackle conversion discrepancies beyond the proof-of-concept.



CyBOK PDF CyBOK Wiki

Tables get converted correctly out-of-the box, though some have issues (see the To-do list).

Bibliographic numbering differs because CyBOK PDF numbering happens on KA level while CyBOK Wiki numbering 
happens on (sub)section level.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

