Lattice-Based Trapdoors and Digital Signatures

Dr. Essam Ghadafi

CyBOK Mapping

The lecture maps to the following CyBOK Knowledge Areas:

- lacktriangle Systems Security o Cryptography
- $\blacksquare \ \, \text{Infrastructure Security} \to \text{Applied Cryptography} \\$

OUTLINE

- Trapdoor Functions: Constructions and their applications in lattice-based cryptography
- Hash Functions from Lattice Assumptions: Their role in post-quantum cryptography
- Falcon Signature Schem: Construction and security
- Dilithium Signature Scheme: Construction and security

DIGITAL SIGNATURES – DEFINITION

Consists of three algorithms:

- KeyGen (1^{κ}) : Given a security parameter, it generates a key pair (VK, SK)
- Sign(SK, m): Produces a signature σ on message m
- Verify(VK, m, σ): Checks validity of σ on m, outputs 1 (accept) or 0 (reject)

DIGITAL SIGNATURES – DEFINITION

Consists of three algorithms:

- KeyGen(1^{κ}): Given a security parameter, it generates a key pair (VK, SK)
- Sign(SK, m): Produces a signature σ on message m
- Verify(VK, m, σ): Checks validity of σ on m, outputs 1 (accept) or 0 (reject)

Correctness: For all security parameters κ , for all key pairs (VK, SK) from KeyGen and all messages m:

$$\mathsf{Verify}(\mathsf{VK}, m, \mathsf{Sign}(\mathsf{SK}, m)) = 1$$

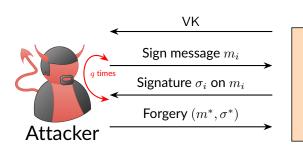
Existential Unforgeability – Intuition

Existential Unforgeability under Chosen-Message Attack (EUF-CMA)

- Attacker can query a signing oracle to get signatures on messages of their choice
- Attacker's goal is to produce a valid signature (forgery) on a new message never queried
- A scheme is EUF-CMA secure if no efficient attacker can succeed with more than negligible probability

EXISTENTIAL UNFORGEABILITY

Existential Unforgeability under Chosen-Message Attack (EUF-CMA)



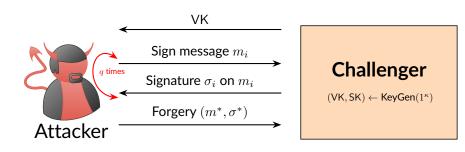
Challenger

 $(\mathsf{VK},\mathsf{SK}) \leftarrow \mathsf{KeyGen}(1^{\kappa})$

EXISTENTIAL UNFORGEABILITY

Essam Ghadafi

Existential Unforgeabilitiy under Chosen-Message Attack (EUF-CMA)



It is infeasible for an attacker playing the above game to output a valid forgery (m^*, σ^*) where:

• σ^* is a valid signature on m^* , and m^* was not submitted for signing during the game

SIGNATURES FROM TRAPDOOR FUNCTIONS

It is well-known that trapdoor functions yield digital signatures

SIGNATURES FROM TRAPPOOR FUNCTIONS

It is well-known that trapdoor functions yield digital signatures

Intuition: The steps are:

- KeyGen: Create a public key VK and a corresponding private trapdoor td. td is part of SK
- Sign: Use the secret key (trapdoor) to generate a signature
- Verify: Use the public key to verify the signature

SIGNATURES FROM TRAPDOOR FUNCTIONS

It is well-known that trapdoor functions yield digital signatures

Intuition: The steps are:

- KeyGen: Create a public key VK and a corresponding private trapdoor td. td is part of SK
- Sign: Use the secret key (trapdoor) to generate a signature
- Verify: Use the public key to verify the signature

Security: Without the secret key (trapdoor), forging a valid signature is infeasible

LATTICE-BASED TRAPDOOR FUNCTION

Reversing is easy if one has the trapdoor

LATTICE-BASED TRAPDOOR FUNCTION

Reversing is easy if one has the trapdoor

One can get a trapdoor one-way function for ISIS

- lacksquare Sample a random matrix $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$ and a trapdoor $\mathsf{td}_\mathbf{A}$
- To compute $f_{\mathbf{A}}(\mathbf{x})$ for $\mathbf{x} \in \mathbb{Z}_q^n$, compute $\mathbf{y} = \mathbf{A}\mathbf{x} \pmod{q}$ and return \mathbf{y}
- To compute $f_{\mathbf{A}}^{-1}(\mathsf{td}_{\mathbf{A}}, \mathbf{y})$ for $\mathbf{y} \in \mathbb{Z}_q^m$, use $\mathsf{td}_{\mathbf{A}}$ to find $\mathbf{x} \in \mathbb{Z}_q^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{y} \pmod{q}$ and $\|\mathbf{x}\| \leq \gamma$

HASH FUNCTIONS FROM LATTICE

SIS can be used to construct a collision-resistant hash function ${\cal H}$ as shown by Ajtai [1]

HASH FUNCTIONS FROM LATTICE

SIS can be used to construct a collision-resistant hash function ${\cal H}$ as shown by Ajtai [1]

To construct $\mathcal{H}:\{0,1\}^m \to \mathbb{Z}_q^n$, set $\mathcal{H}(x)=\mathbf{A}\mathbf{x} \bmod q$ for $\mathbf{A}\in \mathbb{Z}_q^{n\times m}$

HASH FUNCTIONS FROM LATTICE

SIS can be used to construct a collision-resistant hash function ${\cal H}$ as shown by Ajtai [1]

To construct
$$\mathcal{H}:\{0,1\}^m \to \mathbb{Z}_q^n$$
, set $\mathcal{H}(x)=\mathbf{A}\mathbf{x} \bmod q$ for $\mathbf{A}\in \mathbb{Z}_q^{n\times m}$

Security: The scheme is collision-resistant if ${\rm SIS}_{m,n,q,\gamma}$ (for $\gamma=\sqrt{m}$) is hard

DIGITAL SIGNATURE FROM TRAPDOORS

All that remains is to find a safe way to construct the trapdoor td_A

lacktriangle To be secure for a signing, $f_{\mathbf{A}}$ must not leak information about the trapdoor td used in the signing, i.e. the secret key

TRAPDOOR CONSTRUCTION

Possible Ways to generate td_A is to choose td_A as a good (short) basis of the lattice

$$L^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q} \}$$

Finding short vectors in $L^{\perp}(\mathbf{A})$ is hard, especially with a random \mathbf{A} . Pre-selecting a basis without knowing \mathbf{A} is also difficult

TRAPDOOR CONSTRUCTION

Possible Ways to generate td_A is to choose td_A as a good (short) basis of the lattice

$$L^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q} \}$$

Finding short vectors in $L^{\perp}(\mathbf{A})$ is hard, especially with a random \mathbf{A} . Pre-selecting a basis without knowing \mathbf{A} is also difficult

Some methods for generating a matrix ${\bf A}$ with a trapdoor ${\sf td}_{\bf A}$

TRAPDOOR CONSTRUCTION

Possible Ways to generate td_A is to choose td_A as a good (short) basis of the lattice

$$L^{\perp}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{A}\mathbf{x} = \mathbf{0} \pmod{q} \}$$

Finding short vectors in $L^{\perp}(\mathbf{A})$ is hard, especially with a random \mathbf{A} . Pre-selecting a basis without knowing \mathbf{A} is also difficult

Some methods for generating a matrix ${\bf A}$ with a trapdoor ${\sf td}_{\bf A}$

 Ajtai in 1996 introduced a method to construct a random-looking matrix A with a hidden trapdoor

LEFTOVER HASH LEMMA

For a distribution D over \mathbb{Z}^n with min-entropy $H_\infty(D)$, for $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ chosen uniformly at random, for $\mathbf{e} \in \mathbb{Z}_q^n$ sampled from D it holds that

$$\Delta\left((\mathbf{A}, \mathbf{Ae}), (\mathbf{A}, U_m)\right) \leq \epsilon.$$

if

$$H_{\infty}(D) \ge m \log q + 2 \log \left(\frac{1}{\epsilon}\right),$$

The statistical distance between the 2 distributions is at most ϵ where U_m is the uniform distribution over \mathbb{Z}_q^m

LEFTOVER HASH LEMMA

For a distribution D over \mathbb{Z}^n with min-entropy $H_\infty(D)$, for $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ chosen uniformly at random, for $\mathbf{e} \in \mathbb{Z}_q^n$ sampled from D it holds that

$$\Delta\left((\mathbf{A}, \mathbf{Ae}), (\mathbf{A}, U_m)\right) \leq \epsilon.$$

if

$$H_{\infty}(D) \ge m \log q + 2 \log \left(\frac{1}{\epsilon}\right),$$

The statistical distance between the 2 distributions is at most ϵ where U_m is the uniform distribution over \mathbb{Z}_q^m

The lemma implies that under the above conditions, the output of \mathbf{Ae} appears indistinguishable from a uniformly random vector in \mathbb{Z}_q^m

AJTAI TRAPDOOR

Ajtai gave a construction that generates a close to uniform matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ along with a short trapdoor vector \mathbf{t} such that $\mathbf{t} \in \mathbb{Z}^n$ and $\mathbf{A}\mathbf{t} = \mathbf{0} \pmod{q}$

13

AJTAI TRAPDOOR

Ajtai gave a construction that generates a close to uniform matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ along with a short trapdoor vector \mathbf{t} such that $\mathbf{t} \in \mathbb{Z}^n$ and $\mathbf{A}\mathbf{t} = \mathbf{0} \pmod{q}$

Steps:

- Sample a uniformly random matrix $\mathbf{A}' \in \mathbb{Z}_q^{m \times (n-1)}$
- Sample a uniformly random vector $\mathbf{t}' \in \{0,1\}^{n-1}$

Define:

$$\mathbf{A} = \left[\mathbf{A}' \mid\mid -\mathbf{A}'\mathbf{t}'
ight] \in \mathbb{Z}_q^{m imes n}$$
 and $\mathbf{t} = (\mathbf{t}',1).$

AJTAI TRAPDOOR

Ajtai gave a construction that generates a close to uniform matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ along with a short trapdoor vector \mathbf{t} such that $\mathbf{t} \in \mathbb{Z}^n$ and $\mathbf{A}\mathbf{t} = \mathbf{0} \pmod{q}$

Steps:

- Sample a uniformly random matrix $\mathbf{A}' \in \mathbb{Z}_q^{m \times (n-1)}$
- Sample a uniformly random vector $\mathbf{t}' \in \{0,1\}^{n-1}$

Define:

$$\mathbf{A} = \left[\mathbf{A}' \mid\mid -\mathbf{A}'\mathbf{t}'
ight] \in \mathbb{Z}_q^{m imes n}$$
 and $\mathbf{t} = (\mathbf{t}', 1).$

By the Leftover Hash Lemma, A't' is close to uniform, which also means A is close to uniform

Falcon: <u>Fa</u>st Fourier <u>lattice-based compact signatures over NTRU</u>

- Selected by NIST for standardization in 2022 (to appear as FN-DSA in FIPS 206); as of October 2025, the standard draft is still pending and has not yet been released
- Based on:
 - The GPV [2] lattice trapdoor hash-and-sign framework
 - NTRU lattices [3] for efficiency
 - ▶ Works over the polynomial ring $R_q = \mathbb{Z}_q[X]/(X^n + 1)$

Let $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = \mathbb{Z}_q[X]/(X^n + 1)$

Let $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = \mathbb{Z}_q[X]/(X^n + 1)$ Key Generation:

■ Choose polynomials $f, F, g, G \in R$ with short coefficients s.t. $fG - gF = q \mod (X^n + 1)$ (this is the NTRU equation) The secret key is $\mathsf{SK} = \mathbf{B}$ where:

$$\mathbf{B} = \begin{bmatrix} g & -f \\ G & -F \end{bmatrix}$$

Note: **B** is a short basis for $L(\mathbf{B})$

Let $R = \mathbb{Z}[X]/(X^n + 1)$ and $R_q = \mathbb{Z}_q[X]/(X^n + 1)$ Key Generation:

■ Choose polynomials $f, F, g, G \in R$ with short coefficients s.t. $fG - gF = q \mod (X^n + 1)$ (this is the NTRU equation) The secret key is $\mathsf{SK} = \mathbf{B}$ where:

$$\mathbf{B} = \begin{bmatrix} g & -f \\ G & -F \end{bmatrix}$$

Note: **B** is a short basis for $L(\mathbf{B})$ The public key is $VK = \mathbf{A}$ (computed from **B**):

$$\mathbf{A} = \begin{bmatrix} 1 \\ h \end{bmatrix}$$

where $h \in R_q$ is computed as $h = gf^{-1} \mod q$ Note: The key satisfies $\mathbf{B}\mathbf{A} = \mathbf{0} \mod q$

Sign: To sign msg using $SK = \mathbf{B}$, derived from polynomials $f, F, g, G \in R$, use a suitable hash function \mathcal{H} :

Compute:

$$c = \mathcal{H}(r||\mathsf{msg}) \in R_q$$

r is a random salt, e.g. 320-bit binary string

Sign: To sign msg using SK = B, derived from polynomials $f, F, g, G \in R$, use a suitable hash function \mathcal{H} :

Compute:

$$c = \mathcal{H}(r||\mathsf{msg}) \in R_q$$

- r is a random salt, e.g. 320-bit binary string
- Using SK and Fast Fourier Sampling (FFSampling), sample two short polynomials $s_1, s_2 \in R$ s.t.:

$$s_1 + s_2 h = c \pmod{q}$$

Output the signature:

$$\sigma = (r, \mathsf{compressed}(s_1, s_2))$$

Note: The pair (s_1,s_2) is compressed to reduce size

Verify:

- To verify a signature $\sigma = (r, (s_1, s_2))$, after decompressing, on msg, using VK = **A** (derived from polynomial h):
 - Compute $c = \mathcal{H}(r||\mathsf{msg})$

Verify:

- To verify a signature $\sigma = (r, (s_1, s_2))$, after decompressing, on msg, using VK = **A** (derived from polynomial h):
 - Compute $c = \mathcal{H}(r||\mathsf{msg})$
 - Compute $s_1 = c s_2 h \bmod q$

Verify:

- To verify a signature $\sigma = (r, (s_1, s_2))$, after decompressing, on msg, using VK = **A** (derived from polynomial h):
 - Compute $c = \mathcal{H}(r||\mathsf{msg})$
 - Compute $s_1 = c s_2 h \mod q$
 - Verify that s_1 and s_2 are short

FALCON SECURITY & EFFICIENCY

Unforgeability: The scheme is EUF-CMA secure (in the random oracle model) if SIS (over NTRU lattices) is intractable.

FALCON SECURITY & EFFICIENCY

Unforgeability: The scheme is EUF-CMA secure (in the random oracle model) if SIS (over NTRU lattices) is intractable.

TABLE: Falcon Public Key and Signature Sizes

Variant	PK Size (bytes)	Sig Size (bytes)
Falcon-512 (128-bit security)	897	666
Falcon-1024 (256-bit security)	1,793	1,280

KEY COMPONENTS OF FALCON

- Trapdoor Sampling: Uses NTRU lattices instead of general lattices
- Fast Fourier Sampling (FFSampling):
 - Efficient method for discrete Gaussian sampling over lattices
 - Avoids rejection sampling overhead

DILITHIUM SIGNATURE SCHEME

Dilithium, standardized by NIST as ML-DSA (FIPS 204) [4], is based on Module-LWE and Module-SIS

DILITHIUM SIGNATURE SCHEME

Dilithium, standardized by NIST as ML-DSA (FIPS 204) [4], is based on Module-LWE and Module-SIS

Based on the Fiat-Shamir heuristic to transform an interactive ZK proof into a signature scheme

- Signer proves knowledge of SK (LWE secret) and includes the message in the hash used to generate the challenge for the proof of knowledge
- Uses rejection sampling

DILITHIUM SIGNATURE SCHEME

Dilithium, standardized by NIST as ML-DSA (FIPS 204) [4], is based on Module-LWE and Module-SIS

Based on the Fiat-Shamir heuristic to transform an interactive ZK proof into a signature scheme

- Signer proves knowledge of SK (LWE secret) and includes the message in the hash used to generate the challenge for the proof of knowledge
- Uses rejection sampling

Secure in the random oracle model

DILITHIUM EFFICIENCY

TABLE: Dilithium Public Key and Signature Sizes

Variant	PK Size (bytes)	Sig Size (bytes)
Dilithium-2 (128-bit security)	1,312	2,420
Dilithium-3 (192-bit security)	1,952	3,293
Dilithium-5 (256-bit security)	2,592	4,595

COMPARISON OF FALCON AND DILITHIUM

At 128-bit security:

Scheme	Signature Size	Hard Problem
Falcon	666 bytes	SIS over NTRU Lattice
Dilithium	2420 bytes	M-LWE + M-SIS

In comparison, NIST hash-based SPHINCS+ signature size at the same security level is 17088 bytes

KEY TAKEAWAYS

- Hash functions from SIS provide post-quantum secure lattice-based hash functions
- Falcon is based on SIS over NTRU lattices, providing fast, compact signatures with post-quantum security
- Dilithium is based on Module-LWE and provides efficient signatures with provable post-quantum security in the random oracle model

REFERENCES

- [1] M. Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
- [2] C. Gentry, C. Peikert, V. Vaikuntanathan. How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions. STOC 2008.
- [3] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. Silverman, and W. Whyte. NTRUSIGN: Digital Signatures Using the NTRU Lattice. CT-RSA, 2003.
- [4] National Institute of Standards and Technology. Module-Lattice-Based Digital Signature Standard. (Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publication (FIPS) NIST FIPS 204, 2024. Available:

https://doi.org/10.6028/NIST.FIPS.204.