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Lattice-ReIated Hard Problems The lecture maps to the following CyBOK Knowledge Areas:

m Systems Security — Cryptography
m Infrastructure Security — Applied Cryptography
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OUTLINE WORST-CASE VS. AVERAGE-CASE PROBLEMS

m Worst-case vs Average-case Problems m Average-Case Problems: The attacker must succeed in

o Definition and key differences solving some random instances of the problem

o Examples in cryptography
m SVP and its Variants (Shortest Vector Problem) Example: Average-Case Factoring Problem: Given a

o Problem description, Hardness and Variants composite integer N = p x ¢ from a distribution D, over
m CVP and its Variants (Closest Vector Problem) products of two large primes, find p and ¢

o Problem description, Hardness and Variants
m SIS (Short Integer Solution) Problem
o Problem description, Hardness and Variants

m LWE (Learning With Errors) Problem Example: Worst-Case Factoring Problem: Given a
o Problem description, Hardness and Variants composite integer N = p x g, where p and ¢ are large
primes, find p and ¢

m Worst-Case Problems: The attacker must succeed in
solving all instances of the problem

Some problems are hard in the worst-case but easy on average.

Basing security on worst-case hardness provides stronger

(%(uarantees
CyB
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http://www.nationalarchives.gov.uk/doc/open-government-licence/
https://www.cybok.org/media/downloads/Cryptography_v1.0.1.pdf
https://www.cybok.org/media/downloads/Applied_Cryptography_v1.0.0.pdf

SHORTEST VECTOR PROBLEM (SVP)

@ Intuition: Which point in the point grid is closest to the origin
point (centre of the grid)?

The Shortest Vector Problem (SVP):

= Given a basis B for a lattice L(B), find the shortest
non-zero vector v in the lattice
Mathematically:

Ivl[=__min _|[w]|
weL(B)\{0}

equivalently
[[v[| = M(L(B))

Remember the 1st successive minimum \; denotes the
shortest non-zero vector in the lattice
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SHORTEST VECTOR PROBLEM (SVP)

How hard is the problem?
m Hard because finding the shortest vector is NP-hard

m Easy to solve when the basis vectors {by, bo,...,b,} are
orthogonal, i.e. bl b; = 0 forall i,j € {1,...,n} where i # j.
In this case the shortest vector is the shortest base vector
b;

[vsvell = Zin b
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APPROXIMATE SVP (7-SVP)

A related variant to SVP

The goal is to find a vector v that is at most ~ times the length of
the shortest vector where v > 1

= Given a basis B for a lattice L(B), find a vector
v € L(B) \ {0} where ||v|| <~- A\ (L(B))

Remember the 1st successive minimum \; denotes the
shortest non-zero vector in the lattice

m The larger ~, the easier the problem. 1-SVP is SVP
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SVP VARIANTS

m Short Independent Vectors Problem (SIVP) denoted by
(SIVP.):
Input: Basis B € Z;**" for L(B)
Task: Find n linearly independent vectors vy, ..., v, € L(B)
such that ||v;|| < YA\ (L(B)) foralli=1,...,n

m GAP SVP (GapSVP.,)):
Input: Basis B € Z;**" for L(B)
Task: Decide whether \{(L(B)) < 1or \;(L(B)) > v
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CLOSEST VECTOR PROBLEM (CVP)

From a location (which may not be a point) on the
grid, find the nearest grid point

Closest Vector Problem (CVP)
= Given a basis B for a lattice L(B) and a target point t, find
the closest lattice vector v € L(B)
Mathematically: min,¢c ) ||v — t||
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m Harder than SVP and is NP-hard
o SVPis a special case where t = 0. If one can solve CVP, one
can solve SVP. i.e. SVP < CVP
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APPROXIMATE CVP (y-CVP)

The Approximate CVP (v-CVP) is a variant of CVP

Instead of finding the closest vector v € L(B) to t, the task is
instead to find v € L(B) where the distance between v and t is
at most v times the distance between t and the closest vector in
the lattice

Mathematically:

min [[v—t[|<v: min [|v/ -t
veL(B) v'eL(B)

m At least as hard as y-SVP, i.e. v-SVP < +-CVP

CYBOK EssAM GHADAFI

10

BOUNDED DISTANCE DECODING (BDD)

The Bounded Distance Decoding (BDD) problem is a special
case of CVP where the target t is close to a lattice point
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SHORT INTEGER SOLUTION (SIS)

The SIS problem introduced by Ajtai [1] is parametrised by
parameters m, n, ¢,y and is denoted by SIS, ;, 4.«

m Given a random matrix A € ZZ”‘X”, find a short non-zero
vector x € Z" such that ||x|| <~ and

Ax =0 mod q

m A n=10

m Generally, v < ¢n, as otherwise, s = (¢,0,...,0) is a valid
solution

m The bigger m, the harder the problem

m The problem is trivial when n < m
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SHORT INTEGER SOLUTION (SIS)

SIS is used in some hash functions and digital signatures

The Inhomogeneous Short Integer Solution (ISIS) problem is
similar to SIS, except the right-hand side is y € Z; instead of 0

ISIS is parametrised by m, n, ¢, v and denoted by ISIS,, ,, , ~

m Given a random matrix A € Zg’”" and a random vector
y € Z3 find a short vector x € Z" such that |x|| <~ and

Ax =y modgq

o ISISis as hard as SIS
» SIS requires solving Ax = 0 vs. solving Ax —y = 0in ISIS
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SIS AS A LATTICE PROBLEM

SIS is a lattice problem as well

We use the matrix A € Z;”X" to define the lattice:

L(A)={e€Z": Ae =0mod ¢}

SIS is then defined as finding a short vector e in this lattice
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LWE — SETTING THE SCENE

Consider a system of m linear equations of the form:

n
Zalﬂ-si = by mod ¢

=1

n
Z Am,iSi = by, mod ¢
i=1

where a;; € Z, are known coefficients, b; € Z, are known
results, and s; € Z, are the unknowns we seek to solve for.
We can represent the system as

As =b mod q

This system of equations is straightforward to solve (in poly

time), e.g., using Gaussian elimination
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LEARNING WITH ERRORS (LWE)

LWE introduced by Regev [6] adds small noise to linear
equations, making them hard to solve even for quantum
computers

LWE and its variants have been used to construct various types
of cryptosystems, including:

Public-Key Encryption
Key Exchange

Identity-Based Encryption

Zero-Knowledge Proofs
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LEARNING WITH ERRORS (LWE)

Definition: Let m, n, ¢ be positive integers, and let y be a
probability distribution over Z,

The (search) LWE problem denoted by (LWE,, ,, 4.) is:
= Randomly choose a secret vector s € Zg
m Choose a uniformly random matrix A € Z;”X”

m Choose a random error/noise vector e according to ™
e i.e,, each coordinate ¢; is independently drawn from y

Input: (A,b) where As +e=Db mod g where b € Zi?
Task: Recover s
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DEecisioNaAL LWE

The (decision) LWE problem denoted by (D-LWE,,, ,, 4.,/) is:
m A, s, and e are all chosen as in the search LWE problem

m Challenge Generation:

o Case O (real): Compute by = As +e mod ¢
o Case 1 (fake): Choose b; € Zy* uniformly at random

Input: (A, by) where b € {0, 1} is chosen uniformly at random
Task: Guess the case b

Interestingly, LWE can be reduced to D-LWE

m An algorithm solving D-LWE can also solve LWE. The
reverse implication is trivial

o This means equivalence of the two variants of LWE
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HARDNESS OF LWE

= If one can solve SIS,, ,, , -, one can solve LWE,, ,, , ,, i.e.
LWEma”a‘I:X < Slsmﬂﬂﬁ

m If one can solve LWE,;, ,, ; ., One can solve GapSVP,
o e.g. [6,2]: GapSVP,, SIVP., < LWE,, ., 4.,

Note: In [6] the reduction is quantum, while in [2] it is

classical but only for polynomial modulus g, with some losses
in dimension and noise

CYBOK EssAM GHADAFI

19

RING-LWE — SETTING THE SCENE

Ring-LWE (R-LWE) [4] is a LWE variant adapted to
polynomial rings (instead of integers) to improve efficiency

d .
Remember: A polynomial is of the form Y ¢;z*, where:
1=0

m z is the indeterminate, d is the degree of the polynomial (i.e.
the highest power of z), and ¢; € Z are the coefficients

Polynomials can be represented by their coefficient vector
c=(co,C1,...,Cq)
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RING-LWE — SETTING THE SCENE

m Polynomial Ring R: Let R = Z|[x]/ f () for some monic
polynomial f(x) of degree d = n, (e.g. f(z) = 2™ + 1)
o Elements of R are polynomials of degree < n with integer
coefficients
> Ris a set of polynomials reduced modulo f(x)

m Polynomial Ring R,: Let R, = Z[z]/ f ()

o Elements of R, are polynomials of degree < n with
coefficients in in Z,

CYBOK EssAM GHADAFI

21

RinG-LWE

Definition: Given polynomial rings R and R, and an error
distribution x over small elements of ring R

The (Search) Ring-LWE (R-LWE) problem, denoted by
(R-LWE, 1,y ), is defined as follows:

m Sample polynomials a1, ..., a, € R, independently and
uniformly at random. Let a = (ay, ..., an)

m Sample error polynomials eq, . . ., e, independently from y.
Lete = (e1,...,ep)

Input: (a,b =sa+ e mod gR), for some fixed polynomial
s € Ry
Task: Recover s

Note: mod ¢R means reducing polynomial coefficients modulo
q, where ¢R is the ideal in R generated by ¢
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DEecisioNAL RING-LWE

The Decisional Ring-LWE (D-R-LWE) problem denoted by
(D-R-LWE, », ) can be defined similarly where the task is to
distinguish (a, b), where

b=sa+e modqR

from a uniform tuple (a,b) € R} x Ry
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HARDNESS OF RING-LWE

Lyubashevsky, et al. [4, 5] gave the following results

|dea|-S|VP7(WOI’St case) <quantum polytime D'R'LWEq,n,x

m If you can solve D-R-LWE, there is a quantum algorithm
that can solve Ideal-SIVP. (worst case)

R-LWE,,, < D-R-LWE,,

m If you can solve Decisional R-LWE, there is a classical
algorithm that can solve Search R-LWE
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RinG-LWE vs. LWE

m R-LWE yield more efficient constructions

o Multiplication in the polynomial ring is more efficient,
e.g. using FFT-like techniques

o Smaller element representations (Elements from R, vs.
elements from Z)

> Storage cost in standard LWE: O(m - n) integers (typically
O(n?) since m = O(n))
> Storage cost in Ring-LWE: O(n) integers

m Like LWE's relation to SIS, Ring-LWE retains worst-case
hardness due to its close connection to Ring-SIS

Note: R-LWE is defined over structured lattices (ideal lattices
with algebraic structure), whereas LWE works over general,
unstructured lattices

m R-LWE assumes hardness for a special class of lattices
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MobDULE-LWE INTUITION

M-LWE is a bridge between (unstructured) LWE
and structured Ring-LWE

= LWE: Elements are simple vectors over Zy (unstructured)

m Ring-LWE: Elements are polynomials from a ring R, (highly
structured)

m M-LWE: Elements are vectors of polynomials in R’;, more
structured than LWE but less structured than Ring-LWE
o Interpolates between LWE and Ring-LWE

Ring-LWE is a special case of Module-LWE where k =1
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MoODULE-LWE — DEFINITION

Similarly to the setup for Ring-LWE, given
R=1Z[z]/f(z), Ry=R/qR,

a module rank k, and an error distribution x over small elements
of R

The (Search) Module-LWE (M-LWE) problem, denoted by
(M-LWE, ,, k), is:
m Sample elements ay,...,a, € R’; independently and
uniformly at random. Let A = (ay,...,a,) € Rng.
m Independently sample error elements ey, ..., e, € R, from
x-Lete = (e1,...,en) € Ry.

Input: (A,b=As+e)c RQX’“ x Ry, for some secret vector of
polynomials s € R%

Task: Recover s
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MoDULE-LWE — A CLOSER LOOK

< <
]\' 1 1

n A L+ n H n
R
1

Note: : Some formulations explicitly sample s from a distribution
Xs (e.g. discrete Gaussian or binomial); others assume s is
uniform in R’;

Comparison with Ring-LWE:
m Ring-LWE is a special case of M-LWE when k = 1

CYBOK EssAM _GHADAFI
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HARDNESS OF MODULE-LWE

Langlois & Stehlé [3] showed that

Module-SIVP,, <quantum polytime M-LWEg 1, & x

s If M-LWE,,, 1, can be solved efficiently, then worst-case
Module-SIVP, can also be solved efficiently (by a quantum
polynomial-time algorithm)
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EFrrFICIENCY OF MODULE-LWE

Storage cost in Module-LWE is O(n - k)

NIST-standard CRYSTALS-Kyber (key encapsulation mechanism)
and CRYSTALS-Dilithium (signature) both rely on Module-LWE

Example:
In CRYSTALS-Kyber 512, the M-LWE parameters used are:
n="k=2, f(r) = X?% +1,and ¢ = 3329
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DEcCISiIONAL MODULE-LWE — DEFINITION

The setup is similar to search M-LWE

Decisional Module-LWE (D-M-LWE): The problem
(D-M-LWE, ,, 1) is to distinguish between:

(A,b=As+e),

for asecrets ¢ R’;, an error vector e € Rj; with entries
independently sampled from x, and A is a uniformly random
matrix over RQX’“; and

nxk n
(A,b) € R'*F x R

sampled uniformly at random
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MAIN TAKEAWAYS

m Worst-Case vs. Average-Case Problems:
o Worst-case: Focus on the hardest instances (e.g., SVP)
o Average-case: Focus on typical instances (e.g., SIS)
m Shortest Vector Problem (SVP):
o Finding the shortest non-zero vector in a lattice
m Closest Vector Problem (CVP):
e Finding the closest lattice vector to a given point
m Short Integer Solution( SIS):
o Finding short integer solutions to modular equations
m Learning With Errors (LWE):
o Recovering a secret vector from noisy linear equations
m Ring Learning With Errors (R-LWE): A variant of LWE
defined over polynomial rings
o Recovering a secret polynomial from noisy polynomial
equations
m Module Learning With Errors (M-LWE): A generalization of
LWE and R-LWE that balances efficiency and security
across modules
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ADDITIONAL RESOURCES & READING

m D. Micciancio. Efficient reductions among lattice problems.
In ACM-SIAM symposium on Discrete algorithms (SODA),
2008.
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