
Web & Mobile Security
Knowledge Area
Issue 1.0
Sascha Fahl Leibniz University Hannover

EDITOR
Emil Lupu Imperial College London

REVIEWERS
Alastair Beresford University of Cambridge
Sven Bugiel CISPA Helmholtz Center for Information Security
Hao Chen University of California, Davis
Paul Freemantle WSO2
Marco Viera University of Coimbra



The Cyber Security Body Of Knowledge
www.cybok.org

COPYRIGHT
© Crown Copyright, The National Cyber Security Centre 2019. This information is licensedunder the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/

When you use this information under the Open Government Licence, you should include thefollowing attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open-
government-licence/.
The CyBOK project would like to understand how the CyBOK is being used and its uptake.The project would like organisations using, or intending to use, CyBOK for the purposes ofeducation, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.
Issue 1.0 is a stable public release of the Web & Mobile Security Knowledge Area. However,it should be noted that a fully-collated CyBOK document which includes all of the KnowledgeAreas is anticipated to be released by the end of July 2019. This will likely include updatedpage layout and formatting of the individual Knowledge Areas

KA Web & Mobile Security | October 2019 Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

1 INTRODUCTION
The purpose of this Knowledge Area is to provide an overview of security mechanisms, at-tacks and defences in modern web and mobile ecosystems. This overview is intended foruse in academic courses and to guide industry professionals interested in this area.
Web and mobile security have become the primary means through which many users interactwith the Internet and computing systems. Hence, their impact on overall information securityis significant due to the sheer prevalence of web and mobile applications (apps). Coveringboth web and mobile security, this Knowledge Area emphasises the intersection of their secu-rity mechanisms, vulnerabilities and mitigations. Both areas share a lot in common and haveexperienced a rapid evolution in the features and functionalities offered by their client sideapplications (apps). This phenomenon, sometimes called appification, is a driver in modernweb and mobile ecosystems. Web and mobile client apps typically interact with server sideapplication interfaces using web technologies. This second phenomenon, also sometimescalled webification, equally affects both web and mobile ecosystems. In the 1990s, web andmobile security had a strong focus on server-side and infrastructure security. Web browserswere mostly used to render and display static websites without dynamic content. The focuson the server-side prevailed even with the rise of early scripting languages such as Perl andPHP. However, web content became more dynamic in the 2000s, and server-side securityhad to address injection attacks. Similarly to web browsers, early mobile devices had limitedfunctionality and were mostly used to make calls or send SMS. Mobile security back thenfocused on access control, calls and SMS security.
The rise of modern web and mobile platforms brought notable changes. A significant amountof web application code is no longer executed on the server-side but runs in the browser.Web browser support for Java, Adobe Flash, JavaScript and browser plugins and extensionsbrought many new features to the client, which prompted a drastic change of the attack sur-face on the web. New types of attacks such as Cross-Site Scripting emerged and pluginsproved to be vulnerable, e.g. Adobe Flash browser plugins are known for being an attractivetarget for attackers. In response to these new threats, browser vendors and website devel-opers and operators took measures. For instance, Google Chrome disabled the Adobe Flashplugin by default in 2019 [1] and new security best practices were developed [2]. Similarlyto web browsers, mobile devices became smarter and more feature-rich. Smartphones andtablets are equipped with sensors, including motion, GPS and cameras. They have extensivecomputing power, storage capacity and are connected to the Internet 24-7. Modern Androidand iOS devices run full-blown operating systems and increasingly feature-rich and complexapplication frameworks. Mobile apps can request access to all the devices’ resources andsensors using permission based access control, and process highly sensitive user informa-tion. Being powerful, feature-rich, and connected makes mobile clients promising and attrac-tive targets for attackers.
Modern web and mobile ecosystems are the primary drivers for the rise of appification andthe ”there is an app for everything” motto sums up many of the technological and security de-velopments in recent years. The appification trend resulted in millions of apps ranging fromsimple flashlight apps to online social network apps, from online banking apps to mobileand browser-based games. It also sparked the merging of technologies and security mech-anisms used in web and mobile applications. Both ecosystems are typically client-server

KA Web & Mobile Security | October 2019 Page 2

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

oriented. Web browsers and mobile apps communicate with back-end services often usingweb focused technologies. Communication is mostly based on the Hypertext Transfer Pro-tocol (HTTP) and its secure extension HTTPS. Both web-browsers and mobile applicationstend to primarily exchange Hyptertext Markup Language (HTML), JSON and XML documentsand both make extensive use of the JavaScript programming language, on the server- andthe client-side. Webification describes the conversion to these web technologies.
The sheer amount of applications in modern web and mobile ecosystems also impactedthe software distribution model, which moved away from website downloads to centralisedapplication stores, which allow developers to publish, advertise and distribute their software,and users to download new apps and app updates. The centralised software distribution hada positive impact on update frequencies and speed for both web and mobile.
This Knowledge Area focuses on the appification trend and an introduction to the core tech-nologies of the webification phenomenon. Figure 1 provides an overview of the entities in-volved and their interactions.

Mobile Device

Apps
Apps

Sandboxed Apps

https://example.com
https://example.com

Web Browser

https://example.com

<html>
<head>
<title>This is an example</title>
</head>
<script src="myscripts.js"></script>
<body>
...
</body>
</html>

Devs

App Store
Security Checks

Develop web 
applications 
and configure 
infrastructure

Push app updatesInstall apps

Web Server

Users

Is
ol

at
ed

 W
eb

sit
es

HTT
PS Req

ue
sts

HTT
PS Res

po
ns

es

Devs/Ops

Publish apps and 
push updates

Exchange Data with Application Server

Server Side

Client Side

Figure 1: Web and Mobile Ecosystem
After introducing core technologies and concepts, we describe important security mecha-nisms and illustrate how they differ from non-web and non-mobile ecosystems. Softwareand content isolation are crucial security mechanisms and aim to protect apps and web-sites from malicious access. While isolation is understood in relation to traditional operatingsystems (cf. the Operating Systems & Virtualisation CyBOK Knowledge Area [3]), specificsfor web and mobile platforms will be outlined.
Modern web and mobile platforms introduced new forms of access control based on per-
mission dialogues. Whilst a more general discussion of access control is included in theAuthentication, Authorisation & Accountability (AAA) CyBOK Knowledge Area [4], this Knowl-edge Area discusses web and mobile specifics. Web and mobile applications make extensiveuse of the HTTP and HTTPS protocols. Hence, we will discuss the Web Public-Key Infrastruc-ture (PKI) and HTTPS extending the Transport Layer Security (TLS) section in the Network

KA Web & Mobile Security | October 2019 Page 3

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Security CyBOK Knowledge Area [5]. Similarly, we will discuss web and mobile-specific au-thentication aspects, referring readers to the Authentication, Authorisation & Accountability(AAA) CyBOK Knowledge Area [4] for a more general discussion of authentication. Finally, weaddress frequent software updates as a crucial security measure. While software updatesare equally important in traditional computer systems, the centralisation1 of web and mobileecosystems, introduces new challenges and opportunities.
The following sections focus on web and mobile-specific client and server-side security as-pects. However, we will not address common software vulnerabilities (cf. the Software Se-curity CyBOK Knowledge Area [6]) and operating system security (cf. Operating Systems& Virtualisation CyBOK Knowledge Area [3]) in general. Section 3 first covers phishing andclickjacking attacks and defenses. Both affect web and mobile clients and exploit humandifficulties in correctly parsing URLs or identifying changes in the visual appearance of web-sites. As feature-rich web and mobile clients store sensitive data, we will then discuss client-side storage security issues and mitigations. Finally, Section 3 discusses physical attacks onmobile clients, including smudge attacks and shoulder surfing. Section 4 addresses server-side challenges, starting with an overview of frequent injection attacks. We discuss SQL andcommand injection attacks that allow malicious users to manipulate database queries tostorage backends of web applications and commands that are executed. This is followedby a discussion of cross-site scripting and cross-site request forgery attacks and commonserver-side misconfigurations that might lead to vulnerable service backends.
Overall, the discussion of client- and server-side security challenges aims to serve as theunderlining of the natural split between entities in web and mobile ecosystems. Additionally,the chosen aspects illustrate the difference between the web and mobile world from otherecosystems.
Due to its focus on the intersection of both web and mobile security, this Knowledge Areadoes not cover aspects that are unique to either web or mobile such as mobile device security,mobile network (i. e., 2G/3G/4G/5G) security (see Physical Layer and TelecommunicationsCyBOK Knowledge Area [7]), and mobile malware. Some of these aspects are discussed inthe Hardware Security CyBOK Knowledge Area [8], the Malware & Attack Technology CyBOKKnowledge Area [9] and the Network Security CyBOK Knowledge Area [5]. We also do notdiscuss side-channel attacks; the concept and examples for side-channel security are givenin the Hardware Security CyBOK Knowledge Area [8].
2 FUNDAMENTAL CONCEPTS AND APPROACHES

[10, 11, 12, 13, 14, 15, 16, 17, 18]
This section describes fundamental concepts and approaches of modern web and mobileplatforms that affect security. The information presented in this section is intended to serveas a foundation to better understand the security challenges in the following sections. Sim-ilar to other software products and computer systems, mobile operating systems and appli-cations and web browsers as well as web servers may contain exploitable bugs. Generalpurpose software vulnerabilities are discussed in the Software Security CyBOK KnowledgeArea [6].

1There are only a limited number of widely used web browsers and application stores.

KA Web & Mobile Security | October 2019 Page 4

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.1 Appification
Over the last ten years, the rise of mobile devices and ubiquitous Internet access have changedthe way software is produced, distributed and consumed, altering how humans interact withcomputer devices and with software installed on the devices. While regular Internet browsershave been the dominant way of accessing content on the web in the pre-mobile era, the con-cept of appification significantly changed the way users access content online [11]. Appifica-tion describes the phenomenon of moving away from a web-based platform to access mostdigital tools and media online with a web-browser through mobile applications with highlyspecialised, tiny feature sets. As mobile devices grew to become the primary interface forweb access worldwide [19], the number of apps rose enormously over the last decade. “There
is an app for everything” became the mantra of appified software ecosystems, which pro-duced numerous applications for all sorts of use cases and application areas. Many appslook like native local desktop or mobile applications. However, they are often (mobile) webapplications that communicate with back end services, which then outsource computationand storage tasks to the client. The shift towards appification had a significant impact onweb and mobile security creating more security challenges on the client-side. The rise ofappification also impacted the developer landscape. In the pre-appification era, software de-velopment was mostly dominated by experienced developers. Due to the more extensive tooland framework support, the market entrance barrier is lower in appified ecosystems. This at-tracts more inexperienced developers, and has negative consequences for web and mobilesecurity in general (cf. the Human Factors CyBOK Knowledge Area [20]).
The Rise of the Citizen Developer The appification trend attracts many non-professionalsoftware developers called citizen developers. Many of them do not have a software engineer-ing education but make use of multiple simple APIs and tools available to build apps for differentplatforms. Oltrogge et al. [21] found that the adoption of easy-to-use Online Application Genera-tors (OAGs) to develop, distribute and maintain apps has a negative impact on application security.Generated apps tend to be vulnerable to reconfiguration and code injection attacks and rely on aninsecure infrastructure.

2.2 Webification
Modern web and mobile platforms gave rise to another phenomenon. Many of the applica-tions are not native applications written in compiled programming languages such as Java orKotlin and C/C++ (e. g. for Android apps) or Objective-C and Swift (e. g. for iOS apps). Instead,they are based on web technologies including server-side Python, Ruby, Java or JavaScriptscripts and client-side JavaScript. In addition to conventional web applications targetingregular web browsers, mobile web applications are more frequently built using these webtechnologies. In particular, mobile web applications make heavy use of the JavaScript lan-guage.
This section gives a brief introduction to the most essential technologies needed to explainvulnerabilities and mitigations later in the KA. We include Uniform Resource Locators (URLs),the Hypertext Transfer Protocol (HTTP), the Hyptertext Markup Language (HTML), CascadingStyle Sheets (CSS) and the JavaScript programming language. For more detailed information,we suggest reading [22].

KA Web & Mobile Security | October 2019 Page 5

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.1 Uniform Resource Locators

Uniform Resource Locators (URLs) [12] are a core concept in the web. A URL is a well-formedand fully qualified text string that addresses and identifies a resource on a server. Addressbars in modern browser User Interfaces (UIs) use the URLs to illustrate the remote addressof a rendered document. A fully qualified absolute URL string consists of several segmentsand contains all the required information to access a particular resource. The syntax of anabsolute URL is: scheme://credentials@host:port/resourcepath?query parameters#fragments. Eachsegment has a particular meaning (cf. Table 1).
Segment Optional Description
scheme: Indicates the protocol a web client should use to retrieve a resource.Common protocols in the web are http: and https:
// Indicates a hierarchical URL as required by [12]
credentials@ Can contain a username and password that might be needed toretrieve a resource from a remote server.
host Specifies a case-insensitive DNS name (e. g. cybok.org), a raw IPv4

(e. g. 127.0.0.1) or IPv6 address (e. g. [0:0:0:0:0:0:0:1]) to indicate thelocation of the server hosting a resource.
:port Describes a non-default network port number to connect to aremote server. Default ports are 80 for HTTP and 443 for HTTPS.
/resourcepath Identifies the resource address on a remote server. The resourcepath format is built on top of Unix directory semantics.
?query parameters Passes non-hierarchical parameters to a remote resource, such asserver-side script input parameters.
#fragment Provides instructions for the browser. In practice, it is used toaddress an HTML anchor element for in-document navigation.

Table 1: URL segments.
2.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the most widely used mechanism to exchangedocuments between servers and clients on the web. While HTTP is mostly used to transferHTML documents, it can be used for any data. Although HTTP/2.0 [23] is the newest protocolrevision, the most widely supported protocol version is HTTP/1.1 [10]. HTTP is a text-basedprotocol using TCP/IP. An HTTP client initiates a session by sending an HTTP request to anHTTP server. The server returns an HTTP response with the requested file.
The first line of a client request includes HTTP version information (e. g. HTTP/1.1). Theremaining request header consists of zero or more name:value pairs. The pairs are sep-arated by a new line. Common request headers are User-Agent – these include browser in-formation, Host – the URL hostname, Accept – which carries all supported document types,
Content-Length – the length of the entire request and Cookie – see Section 2.8. The re-quest header is terminated with a single empty line. HTTP clients may pass any additionalcontent to the server. Although the content can be of any type, clients commonly send HTMLcontent to the server, e. g. to submit form data. The HTTP server responds to the requestwith a response header followed by the requested content. The response header containsthe supported protocol version, a numerical status code, and an optional, human-readable

KA Web & Mobile Security | October 2019 Page 6

https://www.cybok.org
scheme://credentials@host:port/resourcepath?query_parameters#fragments


The Cyber Security Body Of Knowledge
www.cybok.org

status message. The status notification is used to indicate request success (e. g. status
200), error conditions (e. g. status 404 or 500) or other exceptional events. Response head-ers might also contain Cookie headers – cf. Section 2.8. Additional response header linesare optional. The header ends with a single empty line followed by the actual content of therequested resource. Similar to the request content, the content may be of any type but isoften an HTML document.
Although cookies were not part of the original HTTP RFC [10], they are one of the most impor-tant protocol extensions. Cookies allow remote servers to store multiple name=value pairsin client storage. Servers can set cookies by sending a Set-Cookie: name=value responseheader and consume them by reading a client’s Cookie: name=value request header. Cookiesare a popular mechanism to maintain sessions between clients and servers and to authenti-cate users.
HTTP is request-response based and neatly fits unidirectional data transfer use cases. How-ever, for better latency and more effective use of bandwidth, bidirectional network connec-tions are needed. Bidirectional connections not only allow clients to pull data from the server,but also the server to push data to the client at any time. Therefore, the WebSocket proto-col [24] provides a mechanism on top of HTTP. WebSocket connections start with a regularHTTP request that includes an Upgrade: WebSocket header. After the WebSocket hand-shake is completed, both parties can send data at any time without having to run a newhandshake.
2.2.3 Hypertext Markup Language

The Hyptertext Markup Language (HTML) [13] is the most widely used method to produceand consume documents on the web. The most recent version is HTML5. The HTML syn-tax is fairly straightforward: a hierarchical tree structure of tags, name=value tag parametersand text nodes form an HTML document. The Domain Object Model (DOM) defines the log-ical structure of an HTML document and rules how it is accessed and manipulated. How-ever, competing web browser vendors introduced all sorts of custom features and modifiedthe HTML language to their wishes. The many different and divergent browser implementa-tions resulted in only a small portion of the websites on the Internet adhering to the HTMLstandard’s syntax. Hence, implementations of HTML parsing modes and error recovery varygreatly between different browsers.
The HTML syntax comes with some constraints on what may be included in a parametervalue or inside a text node. Some characters (e. g., angle brackets, single and double quotesand ampersands) make the blocks of the HTML markup. Whenever they are used for a dif-ferent purpose, such as parts of substrings of a text, they need to be escaped. To avoidundesirable side effects, HTML provides an entity encoding scheme. However, the failure toproperly apply the encoding to reserved characters when displaying user-controlled informa-tion may lead to severe web security flaws such as cross-site scripting (cf. Section 4).

KA Web & Mobile Security | October 2019 Page 7

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.4 Cascading Style Sheets

Cascading Style Sheets (CSS) [25] are a consistent and flexible mechanism to manipulatethe appearance of HTML documents. The primary goal of CSS was to provide a straight-forward and simple text-based description language to supersede the many vendor-specificHTML tag parameters that lead to many inconsistencies. However, similar to divergent HTMLparsing implementations, different browsers also implement different CSS parsing behavior.CSS allows HTML tags to be scaled, positioned or decorated without being limited by theoriginal HTML markup constraints. Similar to HTML tag values, values inside CSS can beuser-controlled or provided externally, which makes CSS crucial for web security.
2.2.5 JavaScript

JavaScript [14] is a simple yet powerful object-oriented programming language for the web.It runs both client-side in web browsers and server-side as part of web applications. The lan-guage is meant to be interpreted at runtime and has a C-inspired syntax. JavaScript supportsa classless object model, provides automatic garbage collection and weak and dynamic typ-ing. Client-side JavaScript does not support I/O mechanisms out of the box. Instead, somelimited predefined interfaces are provided by native code inside the browser. Server-sideJavaScript (e. g., Node.js [26]) supports a wide variety of I/O mechanisms, e. g., network andfile access. The following discussion will focus on client JavaScript in web browsers. Ev-ery HTML document in a browser is given its JavaScript execution context. All scripts in adocument context share the same sandbox (cf. Section 2.4). Inter-context communicationbetween scripts is supported through browser-specific APIs. However, execution contextsare strictly isolated from each other in general. All JavaScript blocks in a context are exe-cuted individually and in a well-defined order. Script processing consists of three phases:
Parsing validates the script syntax and translates it to an intermediate binary representationfor performance reasons. The code has no effect until parsing is completed. Blockswith syntax errors are ignored, and the next block is parsed.
Function Resolution registers all named, global functions the parser found in a block. Allregistered functions can be reached from the following code.
Execution runs all code statements outside of function blocks. However, exceptions maystill lead to execution failures.
While JavaScript is a very powerful and elegant scripting language, it brings up new chal-lenges and security issues such as Cross-Site Scripting vulnerabilities (cf. Section 4.1).
2.2.6 WebAssembly

WebAssembly (Wasm) [27] is an efficient and fast binary instruction format and is supportedby most modern browser vendors. It is a stack-based virtual machine language and mainlyaims to execute at native speed on client machines. Code written in WebAssembly is mem-ory safe and benefits from all security features provided by regular code associated with awebsite. WebAssembly code is sandboxed, enforces the same origin policy (cf. Section 2.4)and is limited to the resources provided by the corresponding website’s permissions. Addi-tionally, WebAssembly code can access JavaScript code running in the same origin containerand provide its functionality to JavaScript code from the same origin.

KA Web & Mobile Security | October 2019 Page 8

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.2.7 WebViews

WebViews are a further trend in webification and mobile apps. They allow the easy integra-tion of web content into mobile apps [28]. Developers can integrate apps with HTML andJavaScript and benefit from portability advantages. WebViews run in the context of regularmobile apps and allow a rich two-way interaction with the hosted web content. Mobile appscan invoke JavaScript from within the web content, and monitor and intercept events in theweb content. At the same time, specific JavaScript APIs allow WebView apps to interact withcontent and sensors outside the WebView context. The interaction of web content with na-tive app content raises new security concerns and enables both app-to-web and web-to-appattacks [29, 30, 31]. App-to-web attacks, allow malicious apps to inject JavaScript into hostedWebViews with the goal to exfiltrate sensitive information or trick WebViews into navigatingto and presenting users with untrusted and potentially malicious websites. Web-to-app at-tacks inject untrusted web content into an app and leverage an app’s JavaScript bridge tothe underlying host app. The goal of a web-to-app attack is privilege escalation to the levelof its hosting app’s process.
Both the appification and webification phenomena led to a new way of software distribu-tion. Instead of decentralised download sources, centralised application stores which areillustrated in the next section emerged.
2.3 Application Stores

Application stores are centralised digital distribution platforms that organise the manage-ment and distribution of software in many web and mobile ecosystems. Famous examplesare the Chrome web store for extensions for the Chrome browser, Apple’s AppStore for iOSapplications, and Google Play for Android applications. Users can browse, download, rateand review mobile applications or browser plugins and extensions. Developers can uploadtheir software to application stores that manage all of the software distribution challenges,including the provision of storage, bandwidth and parts of the advertisement and sales. Be-fore publication, most application stores deploy application approval processes for testingreliability, adherence to store policies, and for security vetting [32, 33].
Most of the software available in ecosystems that have application stores is distributedthrough the stores. Only a few users side-load software (i. e. install software from othersources than the store). Application stores allow providers to control which applications areavailable in their stores, which allows them to ban particular applications. Whilst this cangive rise to accusations of censorship, the deployment of security vetting techniques hashelped to significantly reduce the amount of malicious software available in stores [32] andto reduce the number of applications that suffer from vulnerabilities due to the misuse ofsecurity APIs by developers [34]. Deployed security vetting techniques include static anddynamic analysis applied to application binaries and running instances of applications. Inaddition to security vetting techniques, application stores require applications to be signedby developer or application store keys. In Android, application signing does not rely on thesame public key infrastructures used on the web. Instead, developers are encouraged to useself-signed certificates and required to sign application updates with the same key to preventmalicious updates [35]. The application signing procedure on iOS devices requires apps tobe signed by Apple. Unsigned apps cannot be installed on iOS devices. Application storesnot only allow developers and users centralised access to software publication, distributionand download, they also enable users to rate and review published applications. User ratingand reviews are intended to help other users make more informed download decisions, but

KA Web & Mobile Security | October 2019 Page 9

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

they also have a direct connection to application security.
Impact of User Ratings and Reviews on Application Security Nguyen et al. [36] con-ducted a large-scale analysis of user reviews for Android applications and their impact on securitypatches. They found that the presence of security- and privacy-related user reviews for applica-tions are contributing factors to future security-related application updates.

2.4 Sandboxing
Both modern mobile and browser platforms make use of different sandboxing techniques toisolate applications and websites and their content from each other (cf. Operating Systems& Virtualisation CyBOK Knowledge Area [3]) [37, 38]. This also aims to protect the platformagainst malicious applications and sites. Major web browsers (e.g. Google Chrome [39])and mobile platforms (e.g. Android [40]) implement isolation at an operating system processlevel. Each application or website runs in its own process 2. By default, isolated processescannot interact with each other and cannot share resources. In browsers, site isolation servesas a second line of defence as an extension to the same-origin-policy (cf. Section 2.4.2).
2.4.1 Application Isolation

Modern mobile platforms provide each application with their sandbox running in a dedicatedprocess and their own file-system storage. Mobile platforms take advantage of underlyingoperating system process protection mechanisms for application resource identification andisolation. For example, application sandboxes in Android [40] are set-up at kernel-level. Secu-rity is enforced through standard operating system facilities, including user and group IDs aswell as security contexts. By default, sandboxing prevents applications from accessing eachother and only allows limited access to operating system resources. To access protectedapp and operating system resources inter-app communication through controlled interfacesis required.
2.4.2 Content Isolation

Content isolation is one of the major security assurances in modern browsers. The main ideais to isolate documents based on their origin so that they cannot interfere with each other.The Same-Origin-Policy (SOP) [41] was introduced in 1995 and affects JavaScript and its in-teraction with a document’s DOM, network requests and local storage (e. g., cookies). Thecore idea behind SOP is that two separate JavaScript execution contexts are only allowed tomanipulate a document’s DOM if there is an exact match between the document host and theprotocol, DNS name and port numbers3. Cross-origin manipulation requests are not allowed.Table 2 illustrates sample SOP validation results. Similar to JavaScript-DOM-interaction, theSOP limits the JavaScript XMLHttpRequest capabilities to only issue HTTP requests to theorigin of the host document.
One major flaw of SOP is that it relies on DNS instead of IP addresses. Attackers who canintentionally change the IP address of a DNS entry can therefore circumvent SOP securityguarantees.

2Process-based site isolation is mostly used on desktop computers [39].3The protocol, DNS name and port number triple is called origin.

KA Web & Mobile Security | October 2019 Page 10

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Originating document Accessed document Browser behaviour
https://www.cybok.org/docs/ https://www.cybok.org/scripts/ Access okayhttps://www.cybok.org/ https://books.cybok.org/ Host mismatch
http://www.cybok.org/ https://www.cybok.org/ Protocol mismatchhttps://www.cybok.org/ https://www.cybok.org:10443/ Port mismatch

Table 2: SOP validation examples.
Since code that enforces the same-origin-policy occasionally contains security bugs, modernbrowsers introduced a second line of defence: websites are rendered in their own processesthat run in a sandbox. Sandboxing websites is meant to prevent attacks such as stealingcross-site cookies and saved passwords [42].
Another additional layer of defence to enforce the same-origin policy and improve web ap-plication security is the Content Security Policy (CSP) mechanism [43]. A CSP is primarilyintended to prevent code injection attacks such as XSS (cf. Section 4.1), which exploit thebrowsers’ trust of content that was sent by a web server. This allows malicious scripts to beexecuted in clients’ browsers. CSP allows web developers and server operators to limit thenumber of origins that browsers should consider to be trusted sources of content – includ-ing executable code and media files. A CSP can be used so that servers can globally disablecode execution on the client. To enable CSP, developers or operators can either configure aweb server to send a Content-Security-Policy HTTP response header or add a HTML
¡meta¿ tag to a website. Compatible browsers will then only execute code or load mediafiles from trusted origins.
Example: Content Security Policy Header The following CSP allows users of a web appli-cation to include images from any origin, but to restrict media data (audio or video media) tothe trusted trusted-media.com domain. Additionally, scripts are restricted to the trusted-scripts.comorigin that the web developer trusts:
Content-Security-Policy: default-src ’self’; img-src *; media-src
trusted-media.com; script-src trusted-scripts.com

2.5 Permission Dialog Based Access Control
Permission systems in modern mobile and web platforms enable protection of the privacy oftheir users and reduce the attack surface by controlling access to resources. The control ofaccess to resources on a traditional computer system requires the accurate definition of allinvolved security principals and the protected resources in the system. Finally, an access con-trol system requires a non-bypassable and trusted mechanism to evaluate access requests(the reference monitor) and sound security policies that define the appropriate course of ac-tion for all access requests. Based on the security policies, the reference monitor can decidewhether it grants access or denies access (cf. the Authentication, Authorisation & Account-ability (AAA) CyBOK Knowledge Area [4]).
Modern mobile and web platforms deviate from conventional computer systems in multipleways:

KA Web & Mobile Security | October 2019 Page 11

https://www.cybok.org
trusted-media.com
trusted-scripts.com


The Cyber Security Body Of Knowledge
www.cybok.org

2.5.1 The Security Principals

Traditional computer systems are primarily multi-user systems with human users and pro-cesses running on their behalf. Modern mobile and web platforms extend conventional multi-user systems to also consider all involved developers that have their applications installedon the system as security principals.
2.5.2 The Reference Monitor

Typically, conventional computer systems implement access control as part of the OperatingSystem (OS), e.g., the file system and network stack. User-level processes can then extendthis OS functionality and implement their own access control mechanisms.
Like conventional computer systems, modern mobile and web platforms build on top ofOS low-level access control mechanisms. Additionally, the extensive frameworks on top ofwhich applications are developed and deployed, provide extended interfaces. Modern weband mobile platforms use Inter-Process Communication (IPC) for privilege separation andcompartmentalisation between apps and between apps and the operating system insteadof allowing direct access to resources. Access control mechanisms on calling processesare used to protect IPC interfaces.
2.5.3 The Security Policy

In conventional computer systems, a process can have different privilege levels. It can runas the superuser, as a system service, with user-level privileges or with guest privileges4. Allprocesses that share the same privilege level have the same set of permissions and canaccess the same resources.
Modern mobile and web platforms make a clear distinction between system and third-partyapplications: access to security- and privacy-critical resources is only granted to designatedprocesses and third-party applications have, by default, no access to critical resources. Ifsuch access is required, application developers must request permissions from a set com-monly available to all third-party applications. Most permissions allow developers to usedesignated system processes as deputies to access protected sensitive resources. Thosesystem processes serve as reference monitors and enforce access control policies.
2.5.4 Different Permission Approaches

Mobile and web platforms implement distinct permission approaches. First, platforms dis-tinguish different privilege levels. A common distinction is two levels (e.g., as implementedon Android): normal (e.g., access to the Internet) and dangerous permissions (e.g., access tothe camera or microphone). While application developers have to request both normal anddangerous permissions to grant their applications access to the respective resources, thelevels differ for application users. Normal permissions are granted silently without any appli-cation user interaction. However, whenever applications require dangerous permissions, theunderlying mobile or web platform presents users with permission dialogues. While earlierAndroid versions showed users a list of all the necessary permissions of an application at in-stall time, modern mobile platforms and browsers present permission dialogues at run-time.A permission dialog usually is shown the first time an application requests access to the cor-responding resource. Application users can then either grant or deny the application access
4Depending on the system, more levels may be implemented.

KA Web & Mobile Security | October 2019 Page 12

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

to the resource. Modern permission-based access control systems allow greater flexibilityand control for both developers and users.

(a) Install permissions (b) Runtime permissions
Figure 2: Firefox Permission Dialogues

(a) Install permissions that can still be foundon legacy apps (b) Runtime permissions on modern apps

Figure 3: Android Permission Dialogues

Permission Dialogues: Attention, Comprehension and Behaviour While permission dia-logues theoretically allow for greater flexibility and control, in practice they tend to have seriouslimitations. Porter Felt et al. found that Android applications developers tend to request morepermissions for their applications than needed [15]. Hence, applications request access to moreresources than strictly necessary, which violates the least-privilege principle. Similarly to develop-ers, end-users struggle with permission dialogues. Porter Felt et al. [44] found that they often donot correctly understand permission dialogues and ignore them due to habituation (cf. the HumanFactors CyBOK Knowledge Area [20]).

KA Web & Mobile Security | October 2019 Page 13

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.6 Web PKI and HTTPS
The web PKI and the HTTPS [16, 17] protocol play a central role in modern mobile and webplatforms, both of which are based on client-server architectures. In the web, web serversor applications exchange information with browsers. On mobile platforms, apps exchangeinformation with backend (web) servers. In both cases, HTTPS should always be used forsecure network connections between clients and servers. To establish secure network con-nections, the web public key infrastructure is used. Using the web PKI and X.509 certificates,clients and servers can authenticate each other and exchange cryptographic key materialfor further encrypted information transport. This KA will not provide further details on howthe authentication process and the key exchange procedures work in detail (cf. the NetworkSecurity CyBOK Knowledge Area [5]). Rather, it gives an overview of aspects specific to weband mobile platforms.
HTTPS is the most widely deployed secure network protocol on the web and mobile. It over-lays HTTP on top of the TLS protocol to provide authentication of the server, and integrityand confidentiality for data in transit. While HTTPS offers mutual authentication of serversand clients based on X.509 certificates, the primary use is the authentication of the accessedserver. Similar to TLS, HTTPS protects HTTP traffic against eavesdropping and tamperingby preventing man-in-the-middle attacks. Since HTTPS encapsulates HTTP traffic, it protectsURLs, HTTP header information including cookies and HTTP content against attackers. How-ever, it does not encrypt the IP addresses and port numbers of clients and servers. WhileHTTPS can hide the information exchanged by clients and servers, it allows eavesdroppersto learn the top-level domains of the websites browsers that users visit, and to identify thebackend servers that mobile apps communicate with.
Both web browsers and mobile apps authenticate HTTPS servers by verifying X.509 certifi-cates signed by Certificate Authorities CAs. Browsers and mobile apps come with a list ofpre-installed certificate authorities or rely on a list of pre-installed CAs in the host operatingsystem. A pre-installed certificate authority list in modern browsers and on modern mobileplatforms typically contains hundreds of CAs. To be trusted, an HTTPS server certificateneeds to be signed by one pre-installed CA.5
Modern browsers present users with a warning message (e. g., see Figure 4) when the servercertificate could not be validated. The warning messages are intended to indicate a man-in-the-middle attack. However, common reasons for warning messages are invalid certificates,certificates that were issued for a different hostname, network errors between the client andserver and errors on the client such as misconfigured clocks [45]. In most cases, browserusers can click-through a warning message and visit a website even if the server certificatecould not be validated [46]. Browsers use coloured indicators in the address bar to display thesecurity information for a website. Websites loaded via HTTP, websites loaded via HTTPSthat load some of their content (e.g. CSS or JavaScript files) over an HTTP connection6 andsites that use an invalid certificate but for which the user clicked through a warning are dis-played as insecure. HTTPS websites with a valid certificate are displayed with a correspond-ing security indicator (e. g., see Figure 4). In contrast, users of mobile, non-browser appscannot easily verify whether an application uses the secure HTTPS protocol with a valid cer-tificate. No visual security indicators similar to those used in browsers are available. Instead,users have to trust application developers to take all the necessary security measures forHTTPS connections.

5See the Network Security CyBOK Knowledge Area [5] for details on the validation process.6Called mixed content.

KA Web & Mobile Security | October 2019 Page 14

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

(a) Warning message for invalid certificate in Chrome

(b) Invalid certificate (c) Valid andtrusted certifi-cate
(d) Extended validation certificate

Figure 4: Warning messages and security indicators in Chrome.
As of 2019, most of the popular websites support HTTPS, and the majority of connectionsfrom clients to servers in the web and mobile applications use HTTPS to protect their usersagainst man-in-the-middle attacks. To further increase the adoption of HTTPS, server op-erators are encouraged to use HTTPS for all connections and deploy HTTP Strict TransportSecurity (HSTS) [47]. Additionally, browser users can install extensions and plugins to rewriteinsecure HTTP URLs to secure HTTPS URLs [48] if possible, and mobile application frame-works make HTTPS the default network protocol for HTTP connections.
Using HTTPS does protect the content against attackers but does not preserve metadata(e. g., which websites a user visits). Please refer to the Privacy & Online Rights CyBOK Knowl-edge Area [49] for more information, including private browsing and the Tor network.
Rogue Certificate Authorities and Certificate Transparency The web PKI allows everytrusted root certificate authority to issue certificates for any domain. While this allows websiteoperators to freely choose a CA for their website, in the past some CAs have issued fraudulentcertificates for malicious purposes. One of the most prominent examples is the DigiNotar CA,which in 2011 [50] issued fraudulent certificates for multiple websites including Google’s Gmailservice. Nobody has been charged for the attack. However, DigiNotar went bankrupt in 2011.Certificate transparency [51] was introduced to fight fraudulent certificate issuance. Certificatetransparency provides a tamper proof data structure and monitors all certificate issuance pro-cesses of participating CAs. While it cannot prevent fraudulent certificate issuance, it improvesthe chances of detection. Clients can verify the correct operation of the certificate transparencyproviders and should only connect to websites that use X.509 certificates that include a signedcertificate timestamp. Certificate transparency is supported by most major certificate authoritiesand browser vendors.

KA Web & Mobile Security | October 2019 Page 15

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.7 Authentication
Authentication in the web and on mobile platforms is an important security mechanism de-signed to enable human users to assert their identity to web applications, mobile devices ormobile apps. Authentication goes hand in hand with authorisation which describes the spec-ification of access privileges to resources. The specified access privileges are later on usedto grant or deny access to resources for authenticated users. This section will not give a de-tailed overview of authentication and authorisation concepts (cf. the Authentication, Autho-risation & Accountability (AAA) CyBOK Knowledge Area [4]) but will focus on authenticationmechanisms and technologies relevant for web and mobile platforms.
2.7.1 HTTP Authentication

Figure 5: Basic HTTP Authentication exchange.
In the HTTP context, authentication generally refers to the concept of verifying the identityof a client to a server, e. g., by requiring the client to provide some pre-established secretssuch as username and password with a request. This section highlights two widely usedauthentication methods on the web, Basic HTTP authentication, and the more frequently used
HTTP Form-based HTTP authentication.
Basic HTTP authentication [52] is a mechanism whose results are used to enforce accesscontrol to resources. It does not rely on session identifiers or cookie data. Nor does theBasic HTTP authentication scheme require the setup of dedicated login pages, as all ma-jor browsers provide an integrated login form. A server can trigger this authentication op-tion by sending a response header containing the “HTTP 401 Unauthorised” statuscode and a “WWW-Authenticate: Basic” field. Credentials entered into this form bythe client are combined with a “:” (“Username:Password”), Base64 encoded for transit(“VXNlcm5hbWU6UGFzc3dvcmQK”), and added as Authorisation header to the next request(“Authorization: Basic VXNlcm5hbWU6UGFzc3dvcmQK”). An example exchange be-tween server and client is shown in Figure 5. The Basic authentication scheme is not secure,as the credentials are transmitted after a simple Base64 encoding, which is trivial to reverse.Hence, login credentials are transmitted in plain text across the network, which allows at-tackers or network observers to easily steal the credentials. Therefore, Basic HTTP authenti-cation should not be used without additional enhancements that ensure confidentiality andintegrity such as HTTPS.
Form-based HTTP authentication in which websites use a form to collect login credentialsis a widely prevalent form of authentication in modern web and mobile applications. For this

KA Web & Mobile Security | October 2019 Page 16

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

scheme, an unauthenticated client trying to access restricted content is shown an HTML-based web form that prompts for their credentials. The client then submits the entered cre-dentials to the sever (e. g., in a POST request). The server validates the form data and au-thenticates the client on successful validation. Similar to Basic authentication, Form-basedauthentication exposes user credentials in plain text if not protected by HTTPS.
2.7.2 Mobile Device Authentication

Mobile devices deploy a variety of authentication mechanisms to unlock devices, grant usersaccess, and protect their data from illegitimate access. The most common mechanisms formobile device authentication are passwords, PINs, patterns and biometric features.
Users can use common alphanumeric passwords, including special characters. However,since mobile device authentication is a frequent task [53], many users tend to unlock theirmobile device using numerical PINs. Android devices also support unlock patterns (see Fig-ure 6). Instead of choosing a password or PIN, users can pick an unlock pattern from a 3x3grid.
Modern mobile devices allow users to authenticate using biometric features, including finger-print and facial recognition. These authentication features rely on hardware security primi-tives, such as ARM’s TrustZone (cf. the Human Factors CyBOK Knowledge Area [20]).

(a) PIN (b) Pattern (c) Password (d) Fingerprint In-dicator (e) Facial Recogni-tion Indicator
Figure 6: Android Device Unlocking

Android Unlock Patterns Similar to passwords (see Section 2.9) device unlock patterns sufferfrom multiple weaknesses. Uellenbeck et al. [54] conducted a study to investigate users’ choicesof 3×3 unlock patterns. They found empirical evidence that users tend to choose biased patterns,e. g., users typically started in the upper left corner and selected three-point long straight lines.Hence, similar to regular passwords (cf. the Human Factors CyBOK Knowledge Area [20]) theentropy of unlock patterns is rather low. In addition to users choosing weak unlock patterns, themechanism is vulnerable to shoulder surfing attacks (see Section 3.3). As a countermeasure, DeLuca et al. [55] propose to use the back of a device to authenticate users.

KA Web & Mobile Security | October 2019 Page 17

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.8 Cookies
Web servers can associate stateful information with particular clients by using HTTP cook-ies [56]. Cookie information (e.g., IDs of items added to the shopping cart in an online shop)is stored by the client. Cookies allow clients and servers to include their unique sessionidentifiers in each HTTP request-response, avoiding the need for repeated authentication.Session cookies expire when the session is closed (e.g., by the client closing the browser)but persistent cookies only expire after a specific time.
Cookie-based authentication allows clients to re-establish sessions every time they send re-quests to the server with a valid cookie. Cookie-based session management is vulnerableto the hijacking of session identifiers [57]. Hijackers who post valid session cookies canconnect to the attacked server with the privileges of the authenticated victim.
Cookies can also be used to track users across multiple sessions by providers. This be-haviour is generally jeopardising user privacy (cf. the Adversarial Behaviours CyBOK Knowl-edge Area [58] and the Privacy & Online Rights CyBOK Knowledge Area [49]).
2.9 Passwords and Alternatives

Passwords are the most widely deployed mechanism to let users authenticate to websitesand mobile applications and protect their sensitive information against illegitimate accessonline. They are the dominant method for user authentication due to their low cost, deploy-ability, convenience and good usability. However, the use of passwords for most online ac-counts harms account security [18]. Since humans tend to struggle memorising many differ-ent complicated passwords, they often choose weak passwords and re-use the same pass-word for multiple accounts. Weak passwords can easily be guessed by attackers offline oronline. Re-used passwords amplify the severity of all password attacks. One compromisedonline account results in all other accounts protected with the same password as vulnerable.While password guidelines in the past frequently recommended the use of complex pass-words, current guidelines state that requiring complex passwords actually weakens pass-word security and advise against policies that include password complexity [59, 60]. Theseaspects are further discussed in the Human Factors CyBOK Knowledge Area [20].
Online service providers deploy various countermeasures to address security issues withweak passwords and password re-use:

KA Web & Mobile Security | October 2019 Page 18

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.9.1 Password Policies

Password policies are rule sets to encourage users to choose stronger passwords. Somepassword policies also address the memorability issue. To support stronger passwords,most rules address password length and composition, blacklists and the validity period of apassword [61, 62].
2.9.2 Password Strength Meters

Password Strength Meters (PSMs) pursue the same goal as password policies and aim to en-courage the choice of stronger passwords. PSMs typically provide visual feedback or assignpasswords scores to express password strength (see Figure 7) [63].

Figure 7: A password strength meter
However, addressing weak passwords and password re-use by deploying restrictive policiesor PSMs has only a limited effect on overall password security [64]. Hence, service providerscan use extensions to simple passwords to increase authentication security.
2.9.3 Password Managers

Password managers can help users generate, store and retrieve strong passwords. Strongpasswords are generated and stored using secure random number generators and secureencryption. They come as locally installable applications, online services or local hardwaredevices. While they can help users use more diverse and stronger passwords, their effect onoverall password security is limited due to usability issues [65]. For a more detailed discus-sion please refer to the Human Factors CyBOK Knowledge Area [20].
2.9.4 Multi-Factor Authentication

Instead of requiring only one factor (e. g., a password), multi-factor authentication systemsrequire users to present multiple factors during the authentication process [66]. Websitepasswords are often complemented with a second factor for two-factor authentication (2FA).Most commonly, the second factor typically makes use of a mobile device. So in addition to apassword, users need to have their device at hand to receive a one-time token to authenticatesuccessfully. The European Payment Services Directive 2 (PSD2) requires 2FA for all onlinepayment services in web and mobile environments (cf. the Authentication, Authorisation &Accountability (AAA) CyBOK Knowledge Area [4]).

KA Web & Mobile Security | October 2019 Page 19

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

2.9.5 WebAuthn

The WebAuthn (Web Authentication) [67] web standard is a core component of the FIDO2project (cf. the Authentication, Authorisation & Accountability (AAA) CyBOK Knowledge Area [4])and aims to provide a standardised interface for user authentication for web-based applica-tions using public-key cryptography. WebAuthn is supported by most modern web-browsersand mobile operating systems. It can be used in single-factor or multi-factor authenticationmode. In multi-factor authentication mode PINs, passcodes, swipe-patterns or biometricsare supported.
2.9.6 OAuth

While not an authentication mechanism itself (cf. the Authentication, Authorisation & Ac-countability (AAA) CyBOK Knowledge Area [4]), Open Authorisation (OAuth) [68] can be usedfor privacy-friendly authentication and authorisation for users against third-party web appli-cations. OAuth uses secure tokens instead of requiring users to provide login credentialssuch as usernames and passwords. On behalf of their users, OAuth service providers provideaccess tokens that authorise specific account information to be shared with third-party appli-cations. More recent successors of the OAuth protocol including OAuth 2 [69] or OpenID Con-nect [70] support federations (cf. the Authentication, Authorisation & Accountability (AAA)CyBOK Knowledge Area [4]). Large providers of online services such as Google or Facebookcan act as identity providers to authenticate users, thus helping users to reduce the numberof login credentials and accounts. While such protocols aim to provide improved security, thecorrect and secure implementation of such complex protocols was shown to be error-proneand might allow malicious users to run impersonation attacks [71].
2.10 Frequent Software Updates

Frequent software updates are a fundamental security measure and particularly crucial forweb and mobile platforms. This section discusses the different components in the web andmobile ecosystems that require regular updates, the different update strategies, and theirpros and cons. Traditionally, browser and mobile device updates required their users to in-stall updates manually whenever new versions were available. Users had to keep an eye onsoftware updates and were responsible for downloading and installing new releases. Thisapproach was error-prone and resulted in many outdated and insecure deployed softwarecomponents.
Most of the critical components on modern web and mobile platforms have short releasecycles. Web browsers, including Google Chrome and Mozilla Firefox, implement auto-updatefeatures and frequently push new versions and security patches to their users.
Mobile platforms also provide automatic application updates for third-party apps. While thisapproach generally results in quicker updates and the timely distribution of security patches,automatic mobile application updates are only enabled by default for devices connected toWiFi. Devices connected to a cellular network (e. g., 3G/4G) do not benefit from automaticapplication updates by default. This update behaviour ensures most third-party applicationupdates are installed on mobile devices within a week [72]. Automatic third-party applicationupdates work well on mobile devices. Mobile operating system update behaviour heavily de-pends on the platform. In particular, many non-Google Android devices suffer from outdatedand insecure operating system versions.
Overall, modern web and mobile platforms recognised the disadvantages of non-automatic

KA Web & Mobile Security | October 2019 Page 20

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

software updates and now provide automatic or semi-automatic platform or application up-dates in most cases.
Outdated Third Party Libraries While frequent software updates are crucial in general, up-dates of third-party libraries is a particularly important security measure for software developerswho need to patch their own code and distribute updates, while also tracking vulnerabilities inlibraries they use and updating them for better security. Derr et al. [73] conducted a measurementstudy of third-party library update frequencies in Android applications and found that a signifi-cant number of developers use outdated libraries, exposing their users to security issues in theaffected third party libraries. Lauinger et al. [74] conducted a similar study for JavaScript librariesin web applications and also found many websites that include outdated and vulnerable libraries.

3 CLIENT SIDE VULNERABILITIES AND MITIGATIONS

[75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]
This section covers attacks and their countermeasures with a focus on the client. It dis-cusses issues in both modern web browsers and mobile devices. The illustrated securityissues highlight aspects that have dominated security discussions in recent years. We focuson attacks that exploit weaknesses in the interaction between users and web browsers andmobile apps. We then discuss challenges resulting from the trend of storing more and moreinformation on the client instead of the server. Finally, we discuss physical attacks that donot focus on exploiting software or human vulnerabilities, but exploit weak points in mobiledevices.
3.1 Phishing & Clickjacking

This section presents two prevalent issues that exploit user interface weaknesses of bothweb and mobile clients. Phishing and clickjacking rely on issues humans have with properlyverifying URLs and the dynamic content of rendered HTML documents.
3.1.1 Phishing

Phishing attacks are fraudulent attacks that aim to steal sensitive information, including lo-gin credentials and credit card numbers from victims [77]. Common types of phishing attacksuse email, websites or mobile devices to deceive victims. Attackers disguise themselves astrustworthy parties and send fake emails, show fake websites or send fake SMS or instantmessages. Fake websites may look authentic. Attackers can use successfully stolen logincredentials or credit card numbers to impersonate victims and access important online ac-counts. Successful phishing attacks may result in identity theft or loss of money.
Attackers commonly forge websites that appear legitimate to trick users into believing theyare interacting with the genuine website. To initiate a phishing attack, attackers plant manip-ulated links on users via email, a website or any other electronic communication. The ma-nipulated link leads to a forged website that appears to belong to the genuine organisationbehind the website in question. Attackers often spoof online social media, online bankingor electronic payment provider websites. They trick victims into following manipulated linksusing misspelled URLs, subdomains or homograph attacks.

KA Web & Mobile Security | October 2019 Page 21

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Example: Phishing URL In the following example URL:
https://paymentorganization.secure.server.com,it appears that the URL points to the secure.server section of the paymentorganization website. How-ever, in fact the link leads to the paymentorganization.secure section of the server.com website.

To make forged websites look even more authentic, some phishers alter a browser’s addressbar by replacing the original address bar with a picture of the legitimate URL or by replacingthe original address bar with a new one. Address bar manipulation attacks require the use ofJavaScript commands. Additionally, phishers leverage Internationalised Domain Name (IDN)homograph attacks [88]. Such attacks exploit that users cannot easily distinguish differentcharacter encodings. For example, the letters ”l” and ”I” (capital i) are hard to distinguish, andby replacing the Latin characters ”a” with the cyrilic character ”a” in the https://paypal.com url,users can deceptively be redirected to a phished PayPal website. [89]. Attacks that involvemanipulated URLs and address bars are even harder to detect in mobile browsers since theaddress bar is not visible during regular browsing. Website phishing is one of the most fre-quent attacks. Most human users find it hard to to spot phishing URLs and websites [75].
Therefore, common countermeasures are anti-phishing training and public awareness cam-paigns [76] that try to sensitise users and teach them how to spot phishing URLs. Modernbrowsers deploy technical security measures, including blacklists and visual indicators thathighlight the top-level domain of a URL, e.g. Google Chrome shows URLs using an encodingthat exposes deceptive characters in IDN attacks 7.
Drive-by-download Attacks Drive-by-download attacks happen when users visit a website,click on a link or on an attachment in a phishing email or on a malicious popup window. While beinga general problem in the web, drive-by-downloads play a particular role in phishing attacks. Insteadof visiting a benign website, drive-by-download attacks download and install malware (cf. theMalware & Attack Technology CyBOK Knowledge Area [9]) on a user’s computer. Attackers needto fingerprint victim clients and exploit vulnerable software components on the client’s computerto plant the malware. Detecting such attacks is an active research area and includes approachessuch as anomaly or signature based malware detection [90].

3.1.2 Clickjacking

In a clickjacking attack, attackers manipulate the visual appearance of a website to trickusers into clicking on a fake link, button, or image. Clickjacking is also known as a user
interface redress attack and belongs to the class of confused deputy attacks [78]. Attackersfool their victims using transparent or opaque layers over original websites. While victimsbelieve they have clicked on the overlay element, the original website element is clicked on.Attackers can thus make their victims trigger arbitrary actions on the original website. Theattack website uses an iFrame to load the target website and can make use of the absolutepositioning features of iFrames for correct visual alignment. Thus, it is hard for victims todetect the attack elements over the original website. Clickjacking attacks are particularlydangerous when victims have already logged in to an online account and visit their accountsettings website. In those cases, an attacker can trick the victim into performing actions ona trusted site when the victim is already logged in. One of the most prominent clickjackingattacks hit the Adobe Flash plugin settings page [79]. Attackers used invisible iFrames to

7cf. https://www.chromium.org/developers/design-documents/idn-in-google-chrome

KA Web & Mobile Security | October 2019 Page 22

https://www.cybok.org
https://www.chromium.org/developers/design-documents/idn-in-google-chrome


The Cyber Security Body Of Knowledge
www.cybok.org

trick their victims into changing the plugin’s security settings and permitting the attackers toaccess the microphone and camera of their victims’ machines.
Clickjacking attacks can be used to launch other attacks against websites and their users,including Cross-Site Request Forgery and Cross-Site Scripting attacks (see Section 4.1) [78].
A clickjacking attack is not a programming mistake but a conceptual problem with JavaScript.Hence, detection and prevention are not trivial. Detecting and preventing clickjacking attackscan be done both server- and client-side. Web browser users can disable JavaScript andiFrames to prevent clickjacking attacks. However, since this would break many legitimatewebsites, different browser plugins (e. g., NoScript [80]) allow the controlled execution ofJavaScript scripts on behalf of the user. In order to contain the impact of clickjacking attacks,users should log out of online accounts when leaving a website, although this could be im-practical. In order to prevent clickjacking attacks on the server-side, website developers needto make sure that a website is not frame-able, i. e. a website does not load if it is inside aniFrame. Websites can include JavaScript code to detect whether a website has been put intoan iFrame and break out of the iFrame. This defence technique is called FrameBusting [81].However, since users might have disabled JavaScript, this method is not reliable. The rec-ommended server-side defence mechanism is to set a proper HTTP response header. The
X-FRAME-OPTIONS header can be set to DENY, which will prevent a website being loadedinside an iFrame.
Clickjacking attacks affect both desktop and mobile web browsers.
Phishing and Clickjacking on Mobile Devices Phishing and Clickjacking are not limited tobrowsers and the web. Mobile application users are susceptible to both attacks. Aonzo et al. [91]find that it is possible to trick users into an end-to-end phishing attack that allows attackers togain full UI control by abusing Android’s Instant App feature and password managers to steal logincredentials. Fratantonio et al. [92] describe the Cloak & Dagger attack that allows a maliciousapplication with only two permissions (cf. Section 2.5) to take control over the entire UI loop. Theattack allows for advanced clickjacking, keylogging, stealthy fishing and silent phone unlocking.

3.2 Client Side Storage
Client-side storage refers to areas that a browser or operating system provides to websitesor mobile applications to read and write information. Storage is local to the client and doesnot require server-side resources or an active Internet connection. At the same time, mali-cious users may manipulate stored information. Hence, client-side storage areas need to beprotected from malicious access. This section describes common client-side storage areasand their protection mechanisms.

KA Web & Mobile Security | October 2019 Page 23

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.2.1 Client Side Storage in the Browser

Historically, client-side browser storage was only used to store cookie information (see Sec-tion 2.8). However, due to their simple design and limited capacity, cookies cannot be used tostore large or complex amounts of information. With the rise of HTML5, more powerful andfeature-rich alternatives for client-side storage in the browser exist. These include WebStor-age [82], which is similar to cookies and stores key-value pairs, and IndexedDB [83], whichserves as a database in the vein of noSQL databases and can be used to store documents,other files and binary blobs.
As mentioned, the primary security issue with client-side storage mechanisms is that ma-licious users can manipulate them. To guarantee integrity for sensitive information (e. g.,session information), developers are advised to cryptographically sign the data stored onthe client and verify it upon retrieval.
In addition to information integrity, a second important aspect of WebStorage and IndexedDBstorage is that stored information is not automatically cleared after users leave a website. Tostore information in a session-like fashion, web application developers are advised to rely onthe sessionStorage object of the WebStorage API [85].
3.2.2 Client Side Storage in Mobile Applications

In mobile applications, handling client-side storage security also depends on the type of infor-mation and storage mechanism, e. g., private storage of an application or public storage suchas an SD card. Most importantly, data should be digitally signed and verified (cf. the Cryp-tography CyBOK Knowledge Area [93]) for both browser and mobile client storage purposes.It is recommended that developers sign and encrypt sensitive information and apply properuser input sanitisation. This is particularly relevant for shared storage such as SD-cards thatdo not use secure access control mechanisms. Instead, proper access administration mech-anisms are provided for storage areas that are private to an application.
Sensitive Information Leaks in Android Applications Enck et al. [94] investigated the se-curity of 1,100 popular Android applications. Amongst other things, they found that a significantnumber of apps leaked sensitive user information to publicly readable storage locations such aslog files and the SD card. Reardon et al. [95] discovered that some sensitive information leaks aremade intentionally to pass sensitive information to another, collaborating and malicious app.

KA Web & Mobile Security | October 2019 Page 24

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

3.3 Physical Attacks
Instead of attacking web or mobile applications’ code, physical attacks aim to exploit bugsand weak points that result from using a device. We focus on two representative examplesbelow.
3.3.1 Smudge attacks

In a smudge attack, an attacker tries to learn passwords, PINs or unlock patterns entered on atouchscreen device. The main problem with entering sensitive unlock information through atouchscreen is the oily smudges that users’ fingers leave behind when unlocking a device. Us-ing inexpensive cameras and image processing software, an attacker can recover the greasetrails and infer unlock patterns, passwords, and PINs [86]. To perform a smudge attack, anattacker needs a clear view of the target display.
3.3.2 Shoulder Surfing

Shoulder surfing is a physical attack where an attacker tries to obtain sensitive informationsuch as passwords, PINs, unlock patterns, or credit card numbers [87]. For a shoulder surf-ing attack, an attacker needs a clear view of the target display. The attacker can mount ashoulder surfing attack either directly by looking over the victim’s shoulder or from a longerrange by using dedicated tools such as cameras or telescopes. Shoulder surfing attacks areparticularly dangerous for mobile device users when authenticating to the device or onlineservices in public spaces such as trains, railways, and airports.
4 SERVER SIDE VULNERABILITIES AND MITIGATIONS

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105]
This section discusses server-side security. It provides details for common aspects of serversecurity, including well-known vulnerabilities and mitigations. The section discusses rootcauses, illustrates examples, and explains mitigations. The aspects discussed below arecentral for the web and mobile environments and dominated many of the security discus-sions in this area in the past.
4.1 Injection Vulnerabilities

Injection attacks occur whenever applications suffer from insufficient user input validationso that attackers can insert code into the control flow of the application (cf. the SoftwareSecurity CyBOK Knowledge Area [6]). Prevalent injection vulnerabilities for web and mobileapplications are SQL and Shell injections [22]. Due to inadequate sanitisation of user input,requests to a database or shell commands can be manipulated by an attacker. Such attackscan leak or modify information stored in the database or issue commands on a system inways developers or operators have not intended. The main goal of injection attacks is tocircumvent authentication and expose sensitive information such as login credentials, per-sonally identifiable information, or valuable intellectual property of enterprises.
Injection vulnerabilities can be addressed by adequately sanitising attacker-controlled infor-mation and deploying proper access control policies. The goal of input sanitisation is to filter

KA Web & Mobile Security | October 2019 Page 25

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

invalid and dangerous input. Additionally, strict access control policies can be implementedto prevent injected code from accessing or manipulating information [96].
4.1.1 SQL-Injection

SQL-injection attacks refer to code injections into database queries issued to relational databasesusing the Structured Query Language (SQL). Many web and mobile applications allow usersto enter information through forms or URL parameters. SQL injection occurs if such userinput is not filtered correctly for escape characters and then used to build SQL statements.Enabling attackers to modify SQL statements can result in malicious access or manipulationof information stored in the database.
Example: SQL Injection attack The statement below illustrates the vulnerability.

1vuln statement = ” ’ SELECT * FROM c r e d i t c a r d s WHERE number = ’ ” +u s e r i n p u t + ” ; ’ ”
The intention of the statement is to retrieve credit card information for a given user input. Anexample for an expected input 123456789.However, the statement above allows malicious values for the user input variable. An attackermight provide ’ OR ’1’=’1 as input which would render the following SQL statement:

1vuln statement = ” ’ SELECT * FROM c r e d i t c a r d s WHERE number = ’ ’OR ’ 1 ’ = ’ 1 ’ ; ”
Instead of retrieving detailed credit card information only for one specific credit card number, thestatement retrieves information for all credit cards stored in the database table. A potential webapplication with the above SQL injection vulnerability could leak sensitive credit card informationfor all users of the application.

The consequences of the above SQL injection vulnerability might be directly visible to theattacker if all credit card details are listed on a results page. However, the impact of an SQLinjection can also be hidden and not visible to the attacker.
blind SQL injections [97], do not display the results of the vulnerability directly to the attacker(e. g., because results are not listed on a website). However, the impact of an attackmight still be visible through observing information as part of a true-false response ofthe database. Attackers might be able to determine the true-false response based onthe web application response and the way the web site is displayed.
second order In contrast to the previous types of SQL injection attacks, second order attacksoccur whenever user submitted input is stored in the database for later use. Otherparts of the application then rely on the stored user input without escaping or filteringit properly.
One way to mitigate SQL injection attacks is with the use of prepared statements [98, 99].Instead of embedding user input into raw SQL statements (see above), prepared statementsuse placeholder 8 variables to process user input. Placeholder variables are limited to storevalues of a given type and prohibit the input of arbitrary SQL code fragments. SQL injectionsattacks would result in invalid parameter values in most cases and not work as intendedby an attacker. Also, prepared statements are supported by many web application devel-opment frameworks at the coding level using Object Relational Mapping (ORM) interfaces.

8Also called bind variables.

KA Web & Mobile Security | October 2019 Page 26

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

ORMs do not require developers to write SQL queries themselves but generate databasestatements from code. While prepared statements are an effective mitigation mechanism, afurther straightforward way is to escape characters in user input that have a special meaningin SQL statements. However, this approach is error-prone, and many applications that applysome form of SQL escaping are still vulnerable to SQL injection attacks. The reasons for themistakes are often incomplete lists of characters that require escaping. When escaping isused, developers should rely on functions provided by web application development frame-works (e. g. themysqli real escape string() function in PHP) instead of implementingtheir own escaping functionality.
4.1.2 Command Injections

This type of injection attack affects vulnerable applications that can be exploited to executearbitrary commands on the host operating system of a web application [106]. Similar to SQLinjection attacks, command injections are mostly possible due to insufficient user input vali-dation. Vulnerable commands usually run with the same privileges as the host application.
An example of a command injection attack is a web application that converts user-providedimages using a vulnerable image command line program. Providing malicious input (e. g.,a filename or a specially crafted support graphic that includes malicious code) might allowattackers to exploit insufficient input validation and extend the original command or run ad-ditional system commands.
A mitigation for command injection attacks is to construct the command strings, including allparameters in a safe way that does not allow attackers to exploit malicious string input. In ad-dition to proper input validation due to escaping, following the principle of least-privilege andrestricting the privileges of system commands and the calling application is recommended.The number of callable system commands should be limited by using string literals insteadof raw user-supplied strings. In order to further increase security, regular code reviews arerecommended, and vulnerability databases (e. g., the CVE [100] database) should be mon-itored for new vulnerabilities. Finally, if possible, executing system commands should beavoided altogether. Instead, the use of API calls in the respective development framework isrecommended.
4.1.3 User Uploaded Files

Files provided by users such as images or PDFs have to be handled with care. Malicious filestrigger unwanted command execution on the host operating system of the server, overloadthe host system, trigger client-side attacks, or deface vulnerable applications [22].
Example: Online Social Network An example application could be an online social networkthat allows users to upload their avatar picture. Without proper mitigation techniques in place, theweb application itself might be vulnerable. A malicious user could upload a .php file. Accessingthat file might prompt the server to process it as an executable PHP file. This vulnerability wouldallow attackers to both execute code on the server with the permissions of the PHP process andalso control the content served to other users of the application.

To prevent attacks through user-uploaded files, both meta-data including file names and theactual content of user-uploaded files need to be restricted and filtered, e.g. looking for mal-ware in uploaded files. Filenames and paths should be constructed using string literals in-stead of raw strings and proper mime-types for HTTP responses used whenever possible.

KA Web & Mobile Security | October 2019 Page 27

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

Files that are only available for download and should not be displayed inline in the browser,can be tagged with a Content-Disposition HTTP response header [101]. Another suc-cessful mitigation for the above issue is to serve files from a different domain. If the domainis not a subdomain of the original domain, the SOP 2.4.2 prevents cookies and other criticalinformation from being accessible to the malicious file. Additionally, JavaScript and HTMLfiles are protected by the SOP as well.
4.1.4 Local File Inclusion

This type of vulnerability is a particular form of the above command injection or user-uploadedfiles vulnerabilities [22]. For example, attackers can exploit a command injection, use a mal-formed path in a database or a manipulated filename. The file path resulting from one ofthese vulnerabilities can be crafted to point to a local file on the server, e. g., a .htaccessor the /etc/shadow file. A vulnerable web application might then access the maliciouslycrafted file path and instead of loading a benign file, read and send the content of the attacker-chosen file and e. g. leak login credentials in the /etc/shadow file.
In addition to sanitisation of file path parameters such as leading / and .. in user input,the application of the least privilege principle is recommended. A web application should beexecuted with minimal privileges and so that it cannot access sensitive files.
4.1.5 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) [102] attacks are injection vulnerabilities that allow attackers toinject malicious scripts (e. g., JavaScript) into benign websites. They can occur whenevermalicious website users are able to submit client scripts to web applications that redistributethe malicious code to other end-users. Common examples of websites that are vulnerable toXSS attacks are message forums that receive user content and show it to other users. Theprimary root cause for XSS vulnerabilities is web applications that do not deploy effectiveinput validation mechanisms. Untrusted and non-validated user-provided data might containclient-side scripts. Without proper user input validation, a malicious JavaScript previouslyprovided by one user, might be distributed to other users and manipulate the website theyare visiting or steal sensitive information. In an XSS attack, the client browser cannot detectthe malicious code, since it is sent from the original remote host, i. e. same-origin-policybased security measures are ineffective. We distinguish two types of XSS attacks:
stored In a stored XSS attack the malicious script is permanently stored on the target server(e. g. in a database) and distributed to the victims whenever they request the storedscript for example as part of a comment in a message forum. Stored XSS attacks arealso called permanent or Type-I XSS.
reflected In a reflected XSS attack, the malicious script is not permanently stored on thetarget server, but reflected by the server to the victims. Malicious scripts in reflectedattacks are distributed through different channels. A common way of delivering a ma-licious script is to craft a link to the target website. The link contains the script andclicking the link executes the malicious script in the website’s script execution context.Reflected XSS attacks are also called non-permanent or Type-II XSS.
Preventing both types of XSS attacks requires rigorous user input validation and escapingby the server. The most effective means of input validation is a whitelist approach, whichdenies any input that is not explicitly allowed. For proper and secure entity encoding, the use

KA Web & Mobile Security | October 2019 Page 28

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

of a security encoding library is recommended, since writing encoders is very difficult andcode review in combination with the use of static code analysis tools is also valuable.
Since eliminating XSS vulnerabilities entirely due to user input sanitization is hard, differentapproaches are discussed in the literature. A promising approach is the randomisation ofHTML tags and attributes. Web applications randomise their order so clients can distinguishbetween benign and trusted content and potentially untrusted malicious content. As long asan attacker does not know the randomisation mapping, clients can successfully distinguishtrusted from untrusted scripts [107].
4.1.6 Cross-Site Request Forgery

Cross Site Request Forgery (CSRF) [103] attacks mislead victims into submitting maliciousHTTP requests to remote servers. The malicious request is executed on behalf of the userand inherits their identity and permissions. CSRF attacks are so dangerous because mostrequests to remote servers include credentials and session information associated with auser’s identity, including session cookies. Authenticated users are particularly attractive vic-tims for attackers since it can be hard for remote servers to distinguish between benign andmalicious requests as long as they are submitted from the victim’s machine. CSRF attacks donot easily allow attackers to access the server response for the malicious request. Therefore,the main goal of a CSRF attack is to trick victims into submitting state-changing requests toremote servers. Attractive targets are requests that change the victim’s credentials or pur-chase something.
Example: Online Banking In the following online banking scenario Alice wishes to trans-fer 50 EUR to Bob using an online banking website that is vulnerable to a CSRF attack. A be-nign request for an authenticated user Alice for the mentioned scenario could be similar to GET
https://myonlinebank.net/transaction?to=bob&value=50. In a first step, an attackercan craft a malicious URL such as https://myonlinebank.et/transaction?to=attacker&value=50 and re-place the intended recipient of the transaction with the attacker’s account. The second step forsuccessful CSRF attack requires the attacker to trick Alice into sending the malicious request withher web browser, e. g. by sending a SPAM email containing the request which Alice subsequentlyclicks on. However, CSRF attacks are not limited to HTTP GET requests but also affect POSTrequests, e. g. by crafting malicious ¡form¿ tags.

Many misconceptions lead to ineffective countermeasures. CSRF attacks cannot be pre-vented by using secret cookies because all cookies are sent from a victim to the remoteserver. Also, the use of HTTPS is ineffective as long as the malicious request is sent fromthe victim, because the protocol does not matter and the use of POST requests for sensitiveinformation is insufficient since attackers can craft malicious HTML forms with hidden fields.To effectively prevent CSRF attacks, it is recommended to include randomised tokens in sen-sitive requests, e. g., by adding them to the request headers. The tokens must be unique persession and generated with a secure random number generator to prevent attackers frompredicting them. Servers must not accept requests from authenticated clients that do notinclude a valid token.

KA Web & Mobile Security | October 2019 Page 29

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

4.2 Server Side Misconfigurations & Vulnerable Components
A web application stack consists of multiple components, including web servers, web ap-plication frameworks, database servers, firewall systems, and load balancers and proxies.Overall, web application security highly depends on the security of each of the involved com-ponents.
A single insecure component is often enough to allow an attacker access to the web applica-tion and further escalate their attack from the inside. This is why deploying and maintaininga secure web application requires more than focusing on the code of the app itself. Everycomponent of the web application stack needs to be configured securely and kept up to date(see Section 2.10).
The Heartbleed Vulnerability A famous example of a critical vulnerability that affected manyweb application stacks in 2014 is Heartbleed [104]. Heartbleed was a vulnerability in the widelyused OpenSSL library and caused web servers to leak information stored in the webservers’ mem-ory. This included TLS certificate information such as private keys, connection encryption details,and any data the user and server communicated, including passwords, usernames, and creditcard information [105]. To fix affected systems, administrators had to update their OpenSSL li-braries as quickly as possible and ideally also revoke certificates and prompt users to changetheir passwords.

As previously discussed, the principle of least privilege can reduce a web application’s attacksurface tremendously. Proper firewall and load balancer configurations serve as examples:
4.2.1 Firewall

To protect a webserver, a firewall should be configured to only allow access from outsidewhere access is needed. Access should be limited to ports like 80 and 443 for HTTP requestsvia the Internet and restricting system configuration ports for SSH and alike to the internalnetwork (cf. the Network Security CyBOK Knowledge Area [5]).
4.2.2 Load Balancers

A load balancer is a widely deployed component in many web applications. Load balancerscontrol HTTP traffic between servers and clients and provide additional access control forweb application resources. They can be used to direct requests and responses to differentweb servers or ports, balance traffic load between multiple web servers and protect areasof a website with additional access control mechanisms. The most common approach forcontrolling access is the use of .htaccess files. They can restrict access to content on theoriginal web server and instruct load balancers to require additional authentication.
Load balancers can also serve for rate limiting purposes. They can limit request size, allowedrequest methods and paths or define timeouts. The main use of rate-limiting is to reduce thepotentially negative impact of denial of service attacks on a web server and prevent usersfrom spamming systems, as well as restrict and prevent unexpected behavior.
Additionally, load balancers can be used to provide secure TLS connections for web appli-cations. When managing TLS, load balancers serve as a network connection endpoint forthe TLS encryption and either establish new TLS connections to the application service orconnect to the web application server using plain HTTP. If the web application server is nothosted on the same machine, using plain network connections might leak information to the

KA Web & Mobile Security | October 2019 Page 30

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

internal network. However, if the web application server does not provide HTTPS itself, usinga load balancer as a TLS endpoint increases security.
HTTPS Misconfigurations One cornerstone of web and mobile security is the correct and se-cure configuration of HTTPS on web servers. However, Holz et al. [108] found that a significantnumber of popular websites deploy invalid certificates with incomplete certificate chains, issuedfor the wrong hostname or expired lifetime. In a similar study Fahl et al. [109] confirmed thesefindings and also asked website operators for the reasons for deploying invalid certificates. Mostoperators were not aware of using an invalid certificate or used one on purpose because they didnot trust the web PKI. Krombholz et al. [110, 111] conducted a set of studies and found that opera-tors have difficulties with correctly configuring HTTPS, or they harbour misconceptions about thesecurity features of HTTPS.

4.2.3 Databases

Similar to load balancers and firewalls, many web applications include databases to storeuser information permanently. Often, databases are operated as an additional service that ishosted on another server. The application server interacts with the database through librariesand APIs. It is important to prevent injection vulnerabilities on the server. Additionally, errorsin the implementation of database libraries or coarse permissions required by the applicationcan lead to vulnerabilities.
To reduce the attack vector, most database systems provide user management, to limit userprivileges to create, read, delete or modify entries in tables and across databases. In this wayone database per application can be created and particular users with read-only permissionscan be used by the application server.
An important aspect of increasing database security is the decision on how to store data.Encrypting data before storage in the database can help. However, especially for passwordsor other information that only needs to be compared for equality, hashing before storage cantremendously increase security. In the case of a data leak, the sensitive information remainsunreadable. To store passwords securely, web and mobile app developers are recommendedto use a secure hash function such as Argon2 [112] or PBKDF2 [113] in combination with acryptographically strong credential-specific salt. A salt is a cryptographically strong fixed-length random value and needs to be newly generated for for each set of credentials [114].
Password Leaks Developers tend to store plain passwords, credit card information or othersensitive information in databases instead of encrypting or hashing them (cf. the Human FactorsCyBOK Knowledge Area [20]). Hence, many leaks of password databases or credit card infor-mation put users at risk [115]. Modern browsers and password managers help users to avoidpasswords that were part of a previous data breach [116].

KA Web & Mobile Security | October 2019 Page 31

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

5 CONCLUSION
As we have shown, web and mobile security is a diverse and broad topic covering many ar-eas. This Knowledge Area emphasised an intersectional approach by exploring security con-cepts and mechanisms that can be found in both the web and the mobile worlds. It thereforebuilds upon and extends the insights from other Knowledge Areas, in particular the SoftwareSecurity CyBOK Knowledge Area [6], Network Security CyBOK Knowledge Area [5], HumanFactors CyBOK Knowledge Area [20], Operating Systems & Virtualisation CyBOK KnowledgeArea [3], Privacy & Online Rights CyBOK Knowledge Area [49], Authentication, Authorisation& Accountability (AAA) CyBOK Knowledge Area [4] and the Physical Layer and Telecommu-nications CyBOK Knowledge Area [7].
We showed that due to the ubiquitous availability and use of web and mobile applicationsand devices, paying attention to their security issues is crucial for overall information security.We discussed web technologies that build the core of both web and mobile security, outlinedtheir characteristics and illustrated how they are different from other ecosystems.
Later on, we split the discussion into client- and server-side aspects. In particular, this Knowl-edge Area has focused on attacks and defences that were prevalent in web and mobile clientsand servers and that dominated discussions in recent years.
CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Section References
2 Fundamental Concepts and Approaches2.1 Appification [11, 21]2.2 Webification [22, 14, 31]2.3 Application Stores [32, 33, 36]2.4 Sandboxing [37, 38, 39, 40]2.5 Permission Dialog Based Access Control [15, 44]2.6 Web PKI and HTTPS [16, 17, 45, 51]2.7 Authentication [52, 54]2.8 Cookies [56]2.9 Passwords and Alternatives [61, 63, 65]2.10 Frequent Software Updates [73, 74]3 Client Side Vulnerabilities and Mitigations3.1 Phishing & Clickjacking [77, 75, 76, 81]3.2 Client Side Storage [82]3.3 Physical Attacks [86, 87]4 Server Side Vulnerabilities and Mitigations4.1 Injection Vulnerabilities [96, 97, 98, 102, 103]4.2 Server Side Misconfigurations & Vulnerable Components [108, 110, 111, 116]

FURTHER READING
The following resources provide a deeper insight into web and mobile security as well asguidance and recommendations for preventing and handling the vulnerabilities presentedand discussed above.

KA Web & Mobile Security | October 2019 Page 32

https://www.cybok.org


The Cyber Security Body Of Knowledge
www.cybok.org

The OWASP Project & Wiki
The Open Web Application Security Project (OWASP) is an international not-for-profit charita-ble organisation providing practical information about application and web security. It fundsmany projects including surveys like the OWASP TOP 10, books, CTFs and a wiki contain-ing in-depth descriptions, recommendations and checklists for vulnerabilities and securitymeasurements. The core wiki can be found at https://www.owasp.org/.
Mozilla Developer Network

An all-encompassing resource provided by Mozilla covering open web standards, includingsecurity advice and cross platform behaviour for Javascript APIs, as well as a HTML and CSSspecifications. It can be found at https://developer.mozilla.org

Android Developers
The official documentation for the Android development ecosystem, including security ad-vice for client side storage, webviews, permissions, Android databases and network connec-tions. It also includes information for outdated operating system versions and the GooglePlay Update process. Available at https://developer.android.com

REFERENCES
[1] Google, “Manage flash in your users’ Chrome browsers,” 2019. [Online]. Available:https://support.google.com/chrome/a/answer/7084871[2] OWASP, “OWASP cheat sheet series,” 2019. [Online]. Available: https://www.owasp.org/index.php/OWASP Cheat Sheet Series[3] H. Bos, TheCyber Security Body of Knowledge. University of Bristol, 2019, ch. OperatingSystems & Virtualisation, version 1.0. [Online]. Available: https://www.cybok.org/[4] D. Gollmann, The Cyber Security Body of Knowledge. University of Bristol, 2019,ch. Authentication, Authorisation & Accountability, version 1.0. [Online]. Available:https://www.cybok.org/[5] S. Jha, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. NetworkSecurity, version 1.0. [Online]. Available: https://www.cybok.org/[6] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Software Security, version 1.0. [Online]. Available: https://www.cybok.org/[7] S. Čapkun, The Cyber Security Body of Knowledge. University of Bristol, 2019,ch. Physical Layer & Telecommunications, version 1.0. [Online]. Available: https://www.cybok.org/[8] I. Verbauwhede, The Cyber Security Body of Knowledge. University of Bristol, 2019,ch. Hardware Security, version 1.0. [Online]. Available: https://www.cybok.org/[9] W. Lee, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Malware& Attack Technology, version 1.0. [Online]. Available: https://www.cybok.org/[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,“Hypertext Transfer Protocol – HTTP/1.1,” Internet Requests for Comments, NetworkWorking Group, RFC 2616, June 1999. [Online]. Available: https://www.ietf.org/rfc/rfc2616.txt[11] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “SoK: Lessons learned

KA Web & Mobile Security | October 2019 Page 33

https://www.cybok.org
https://www.owasp.org/
https://developer.mozilla.org
https://developer.android.com
https://support.google.com/chrome/a/answer/7084871
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt


The Cyber Security Body Of Knowledge
www.cybok.org

from Android security research for appified software platforms,” in 2016 IEEE Sympo-
sium on Security and Privacy (SP), May 2016, pp. 433–451.[12] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),”Internet Requests for Comments, Network Working Group, RFC 1738, December 1994.[Online]. Available: https://www.ietf.org/rfc/rfc1738.txt[13] W3C, “HTML 5.2,” Dec 2017. [Online]. Available: https://www.w3.org/TR/html52/[14] “Ecmascript language specification,” August 2019. [Online]. Available: https://tc39.es/ecma262/[15] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,”in Proceedings of the 18th ACM Conference on Computer and Communications
Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:http://doi.acm.org/10.1145/2046707.2046779[16] E. Rescorla, “The transport layer security (tls) protocol version 1.3,” Internet Requestsfor Comments, RFC Editor, RFC 8446, August 2018.[17] ——, “HTTP over TLS,” Internet Requests for Comments, RFC Editor, RFC 2818, May2000. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2818.txt[18] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest toreplace passwords: A framework for comparative evaluation of web authen-tication schemes,” in IEEE Symposium on Security and Privacy. IEEE, May2012. [Online]. Available: https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/[19] E. Enge, “Mobile VS. Desktop Usage in 2019,” 2019. [Online]. Available: https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study[20] M. A. Sasse, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Human Factors, version 1.0. [Online]. Available: https://www.cybok.org/[21] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G. Pellegrino, S. Bugiel,and M. Backes, “The rise of the citizen developer: Assessing the security impactof online app generators,” in 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA, May 2018, pp. 634–647.[Online]. Available: https://doi.org/10.1109/SP.2018.00005[22] M. Zalewski, The Tangled Web: A Guide to Securing Modern Web Applications, 1st ed.San Francisco, CA, USA: No Starch Press, 2011.[23] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2(HTTP/2),” Internet Requests for Comments, Internet Engineering Task Force (IETF),RFC 7540, May 2015. [Online]. Available: https://tools.ietf.org/html/rfc7540[24] I. Fette and A. Melnikov, “The websocket protocol,” Internet Requests for Comments,RFC Editor, RFC 6455, December 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6455.txt[25] E. Leung, “Learn to style HTML using CSS,” Aug 2019. [Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/CSS[26] Node.js Foundation, “Node.js,” 2019. [Online]. Available: https://nodejs.org/en/[27] “Webassembly 1.0,” 2019. [Online]. Available: https://webassembly.org/[28] Google, “Android Developer Documentation - WebView,” 2019. [Online]. Available:https://developer.android.com/reference/android/webkit/WebView[29] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A Large-Scale Study of Mo-bile Web App Security,” in Proceedings of the Mobile Security Technologies Workshop
(MoST), May 2015.[30] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and fixing origin-based access con-trol in hybrid web/mobile application frameworks,” NDSS symposium, vol. 2014, pp. 1–

KA Web & Mobile Security | October 2019 Page 34

https://www.cybok.org
https://www.ietf.org/rfc/rfc1738.txt
https://www.w3.org/TR/html52/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
http://doi.acm.org/10.1145/2046707.2046779
http://www.rfc-editor.org/rfc/rfc2818.txt
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.cybok.org/
https://doi.org/10.1109/SP.2018.00005
https://tools.ietf.org/html/rfc7540
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://nodejs.org/en/
https://webassembly.org/
https://developer.android.com/reference/android/webkit/WebView


The Cyber Security Body Of Knowledge
www.cybok.org

15, 2014.[31] ——, “Rethinking security of web-based system applications,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW ’15. Republic and Canton ofGeneva, Switzerland: International World Wide Web Conferences Steering Committee,2015, pp. 366–376. [Online]. Available: https://doi.org/10.1145/2736277.2741663[32] H. Lockheimer, “Android and security,” 2012. [Online]. Available: http://googlemobile.blogspot.com/2012/02/android-and-security.html[33] Apple Inc., “App store review guidelines,” 2019. [Online]. Available: https://developer.apple.com/app-store/review/guidelines/[34] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith,“Why Eve and Mallory love Android: An analysis of Android SSL (in)security,” in
Proceedings of the 2012 ACM Conference on Computer and Communications Security,ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:http://doi.acm.org/10.1145/2382196.2382205[35] Android Developers, “Sign your app — Android Developers,” 2019. [Online]. Available:https://developer.android.com/studio/publish/app-signing[36] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large effect: Measuringthe impact of user reviews on Android app security & privacy,” in Proceedings of the
IEEE Symposium on Security & Privacy, May 2019. IEEE, May 2019. [Online]. Available:https://publications.cispa.saarland/2815/[37] A. Barth, C. Reis, C. Jackson, and Google Chrome Team, “The security architectureof the chromium browser,” Jan. 2008. [Online]. Available: http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf[38] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter, “Themulti-principal OS construction of the Gazelle web browser,” in Proceedings of the
18th Conference on USENIX Security Symposium, ser. SSYM’09. Berkeley, CA, USA:USENIX Association, 2009, pp. 417–432. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855768.1855794[39] Google, “Chrome sandbox,” 2019. [Online]. Available: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md[40] ——, “Android application sandbox,” 2019. [Online]. Available: https://source.android.com/security/app-sandbox[41] A. Barth, “The web origin concept,” Internet Requests for Comments, RFC Editor, RFC6454, December 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6454.txt[42] T. C. Projects, “Site Isolation Design Document.” [Online]. Available: https://www.chromium.org/developers/design-documents/site-isolation[43] M. West, “Initial assignment for the content security policy directives registry,” InternetRequests for Comments, Google, Inc., RFC 7762, January 2016.[44] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions:User attention, comprehension, and behavior,” in Proceedings of the Eighth Symposium
on Usable Privacy and Security, ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp.3:1–3:14. [Online]. Available: http://doi.acm.org/10.1145/2335356.2335360[45] M. E. Acer, E. Stark, A. P. Felt, S. Fahl, R. Bhargava, B. Dev, M. Braithwaite, R. Sleevi,and P. Tabriz, “Where the wild warnings are: Root causes of Chrome HTTPScertificate errors,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.1407–1420. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134007[46] A. P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja, A. Bettes, H. Harris, andJ. Grimes, “Improving SSL Warnings: Comprehension and Adherence,” in Conference

KA Web & Mobile Security | October 2019 Page 35

https://www.cybok.org
https://doi.org/10.1145/2736277.2741663
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://doi.acm.org/10.1145/2382196.2382205
https://developer.android.com/studio/publish/app-signing
https://publications.cispa.saarland/2815/
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://dl.acm.org/citation.cfm?id=1855768.1855794
http://dl.acm.org/citation.cfm?id=1855768.1855794
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
http://www.rfc-editor.org/rfc/rfc6454.txt
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/3133956.3134007


The Cyber Security Body Of Knowledge
www.cybok.org

on Human Factors and Computing Systems, 2015.[47] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport Security (HSTS),” InternetRequests for Comments, RFC Editor, RFC 6797, November 2012. [Online]. Available:http://www.rfc-editor.org/rfc/rfc6797.txt[48] “HTTPS everywhere,” Mar 2018. [Online]. Available: https://www.eff.org/https-everywhere[49] C. Troncoso, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Privacy & Online Rights, version 1.0. [Online]. Available: https://www.cybok.org/[50] Access, “The weakest link in the chain: Vulnerabilities in the SSL certificate authoritysystem and what should be done about them,” 2011. [Online]. Available: https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest Link in the Chain.pdf[51] Google - Certificate Transparency Team, “Certificate transparency,” 2019. [Online].Available: https://www.certificate-transparency.org/[52] J. Reschke, “The ‘Basic’ HTTP Authentication Scheme,” Internet Requests forComments, Internet Engineering Task Force (IETF), RFC 7617, September 2015.[Online]. Available: https://tools.ietf.org/html/rfc7617[53] M. Harbach, E. Von Zezschwitz, A. Fichtner, A. De Luca, and M. Smith, “It’s a hardlock life: A field study of smartphone (un)locking behavior and risk perception,” in
Proceedings of the Tenth USENIX Conference on Usable Privacy and Security, ser.SOUPS ’14. Berkeley, CA, USA: USENIX Association, 2014, pp. 213–230. [Online].Available: http://dl.acm.org/citation.cfm?id=3235838.3235857[54] S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz, “Quantifying the security ofgraphical passwords: The case of Android unlock patterns,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 161–172. [Online]. Available:http://doi.acm.org/10.1145/2508859.2516700[55] A. De Luca, E. von Zezschwitz, N. D. H. Nguyen, M.-E. Maurer, E. Rubegni, M. P.Scipioni, and M. Langheinrich, “Back-of-device authentication on smartphones,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,ser. CHI ’13. New York, NY, USA: ACM, 2013, pp. 2389–2398. [Online]. Available:http://doi.acm.org/10.1145/2470654.2481330[56] A. Barth, “Http state management mechanism,” Internet Requests for Comments, RFCEditor, RFC 6265, April 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6265.txt[57] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving the web: A journeyinto web session security,” ACM Comput. Surv., vol. 50, no. 1, pp. 13:1–13:34, Mar. 2017.[Online]. Available: http://doi.acm.org/10.1145/3038923[58] G. Stringhini, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Adversarial Behaviours, version 1.0. [Online]. Available: https://www.cybok.org/[59] National Institute of Standards and Technology (NIST), U.S., “NIST Special Publication800-63B – Digital Identity Guidelines,” 2019. [Online]. Available: https://pages.nist.gov/800-63-3/sp800-63b.html[60] National Cyber Security Center (NCSC), UK, “Password administration for systemowners,” 2019. [Online]. Available: https://www.ncsc.gov.uk/collection/passwords/updating-your-approach[61] P. G. Inglesant and M. A. Sasse, “The true cost of unusable password policies:Password use in the wild,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 383–392.[Online]. Available: http://doi.acm.org/10.1145/1753326.1753384

KA Web & Mobile Security | October 2019 Page 36

https://www.cybok.org
http://www.rfc-editor.org/rfc/rfc6797.txt
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://www.cybok.org/
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc7617
http://dl.acm.org/citation.cfm?id=3235838.3235857
http://doi.acm.org/10.1145/2508859.2516700
http://doi.acm.org/10.1145/2470654.2481330
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://doi.acm.org/10.1145/3038923
https://www.cybok.org/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
http://doi.acm.org/10.1145/1753326.1753384


The Cyber Security Body Of Knowledge
www.cybok.org

[62] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor,and S. Egelman, “Of passwords and people: Measuring the effect of password-composition policies,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011, pp. 2595–2604.[Online]. Available: http://doi.acm.org/10.1145/1978942.1979321[63] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F. Cranor, H. Dixon,P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher, “Design and evaluation of adata-driven password meter,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’17. New York, NY, USA: ACM, 2017, pp.3775–3786. [Online]. Available: http://doi.acm.org/10.1145/3025453.3026050[64] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, “Does mypassword go up to eleven?: The impact of password meters on password selection,”in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,ser. CHI ’13. New York, NY, USA: ACM, 2013, pp. 2379–2388. [Online]. Available:http://doi.acm.org/10.1145/2470654.2481329[65] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel, “Better managedthan memorized? Studying the impact of managers on password strength andreuse,” in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,MD: USENIX Association, Aug. 2018, pp. 203–220. [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani[66] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time PasswordAlgorithm,” RFC 6238, May 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6238.txt[67] D. Balfanz, A. Czeskis, J. Hodges, J. J.C. Jones, M. B. Jones, A. Kumar, A. Liao, R. Lin-demann, and E. Lundberg, “Web authentication: An API for accessing public key cre-dentials,” https://www.w3.org/TR/webauthn-1/, 2019.[68] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet Requests for Comments,Internet Engineering Task Force (IETF), RFC 6749, October 2012. [Online]. Available:https://tools.ietf.org/html/rfc6749[69] ——, “The OAuth 2.0 authorization framework,” Internet Requests for Comments,RFC Editor, RFC 6749, October 2012. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6749.txt[70] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “Openid connectcore 1.0,” 2014. [Online]. Available: https://openid.net/specs/openid-connect-core-1 0.html[71] W. Li and C. J. Mitchell, “Analysing the security of Google’s implementation ofOpenID connect,” in Proceedings of the 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment - Volume 9721, ser. DIMVA2016. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 357–376. [Online]. Available:https://doi.org/10.1007/978-3-319-40667-1 18[72] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey, NSA:Stay away from my market! Future proofing app markets against powerfulattackers.” in ACM Conference on Computer and Communications Security, G.-J.Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp. 1143–1155. [Online]. Available:http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahlDPFSS14[73] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated: Anempirical study of third-party library updatability on Android,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser.CCS ’17. New York, NY, USA: ACM, 2017, pp. 2187–2200. [Online]. Available:

KA Web & Mobile Security | October 2019 Page 37

https://www.cybok.org
http://doi.acm.org/10.1145/1978942.1979321
http://doi.acm.org/10.1145/3025453.3026050
http://doi.acm.org/10.1145/2470654.2481329
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://rfc-editor.org/rfc/rfc6238.txt
https://rfc-editor.org/rfc/rfc6238.txt
https://tools.ietf.org/html/rfc6749
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1007/978-3-319-40667-1_18
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahlDPFSS14


The Cyber Security Body Of Knowledge
www.cybok.org

http://doi.acm.org/10.1145/3133956.3134059[74] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda, “Thoushalt not depend on me: Analysing the use of outdated JavaScript libraries onthe web,” in 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017, 2017. [On-line]. Available: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/[75] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and J. Hong, “Teaching Johnny notto fall for phish,” ACM Trans. Internet Technol., vol. 10, no. 2, pp. 7:1–7:31, Jun. 2010.[Online]. Available: http://doi.acm.org/10.1145/1754393.1754396[76] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, andT. Pham, “School of phish: A real-world evaluation of anti-phishing training,” in
Proceedings of the 5th Symposium on Usable Privacy and Security, ser. SOUPS’09. New York, NY, USA: ACM, 2009, pp. 3:1–3:12. [Online]. Available: http://doi.acm.org/10.1145/1572532.1572536[77] Z. Dou, I. Khalil, A. Khreishah, A. Al-Fuqaha, and M. Guizani, “SoK: A systematic reviewof software-based web phishing detection,” IEEE Communications Surveys Tutorials,vol. 19, no. 4, pp. 2797–2819, Fourthquarter 2017.[78] F. Callegati and M. Ramilli, “Frightened by links,” IEEE Security Privacy, vol. 7, no. 6, pp.72–76, Nov 2009.[79] T. Espiner, “Adobe addresses flash player ‘clickjacking’ flaw,” Oct 2008. [Online]. Avail-able: https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/[80] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer Firefox experience! -what is it? - InformAction,” 2019. [Online]. Available: https://noscript.net/[81] S. Tang, N. Dautenhahn, and S. T. King, “Fortifying web-based applicationsautomatically,” in Proceedings of the 18th ACM Conference on Computer and
Communications Security, ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 615–626.[Online]. Available: http://doi.acm.org/10.1145/2046707.2046777[82] Mozilla and individual contributors, “Web Storage API,” 2019. [Online]. Available:https://developer.mozilla.org/en-US/docs/Web/API/Web Storage API[83] ——, “IndexedDB API,” 2019. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB API[84] J. Manico, D. Righetto, and P. Ionescu, “JSON web token for Java. OWASP cheat sheetseries,” 2017. [Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/JSON Web Token Cheat Sheet for Java.html[85] Mozilla and individual contributors, “Window.sessionStorage,” 2019. [Online]. Available:https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage[86] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge attacks onsmartphone touch screens,” in Proceedings of the 4th USENIX Conference on Offensive
Technologies, ser. WOOT’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–7.[Online]. Available: http://dl.acm.org/citation.cfm?id=1925004.1925009[87] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt, “Understandingshoulder surfing in the wild: Stories from users and observers,” in Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI’17. New York, NY, USA: ACM, 2017, pp. 4254–4265. [Online]. Available: http://doi.acm.org/10.1145/3025453.3025636[88] E. Gabrilovich and A. Gontmakher, “The homograph attack,” Communications
of the ACM, vol. 45, no. 2, pp. 128–, Feb. 2002. [Online]. Available: http://doi.acm.org/10.1145/503124.503156

KA Web & Mobile Security | October 2019 Page 38

https://www.cybok.org
http://doi.acm.org/10.1145/3133956.3134059
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
http://doi.acm.org/10.1145/1754393.1754396
http://doi.acm.org/10.1145/1572532.1572536
http://doi.acm.org/10.1145/1572532.1572536
https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/
https://noscript.net/
http://doi.acm.org/10.1145/2046707.2046777
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
http://dl.acm.org/citation.cfm?id=1925004.1925009
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/503124.503156
http://doi.acm.org/10.1145/503124.503156


The Cyber Security Body Of Knowledge
www.cybok.org

[89] F. Quinkert, T. Lauinger, W. K. Robertson, E. Kirda, and T. Holz, “It’s not what itlooks like: Measuring attacks and defensive registrations of homograph domains,”in 7th IEEE Conference on Communications and Network Security, CNS 2019,
Washington, DC, USA, June 10-12, 2019, 2019, pp. 259–267. [Online]. Available:https://doi.org/10.1109/CNS.2019.8802671[90] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-downloadattacks and malicious JavaScript code,” in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp.281–290. [Online]. Available: http://doi.acm.org/10.1145/1772690.1772720[91] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing attacks on modernAndroid,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA: ACM, 2018, pp.1788–1801. [Online]. Available: http://doi.acm.org/10.1145/3243734.3243778[92] Y. Fratantonio, C. Qian, S. Chung, and W. Lee, “Cloak and dagger: From two permissionsto complete control of the UI feedback loop,” in Proceedings of the IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2017.[93] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.Cryptography, version 1.0. [Online]. Available: https://www.cybok.org/[94] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android applicationsecurity,” in Proceedings of the 20th USENIX Conference on Security, ser. SEC’11.Berkeley, CA, USA: USENIX Association, 2011, pp. 21–21. [Online]. Available: http://dl.acm.org/citation.cfm?id=2028067.2028088[95] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egelman,“50 ways to leak your data: An exploration of apps’ circumvention of the Androidpermissions system,” in 28th USENIX Security Symposium (USENIX Security 19).Santa Clara, CA: USENIX Association, Aug. 2019, pp. 603–620. [Online]. Available:https://www.usenix.org/conference/usenixsecurity19/presentation/reardon[96] OWASP, “Top 10-2017 A1-Injection,” 2017. [Online]. Available: https://www.owasp.org/index.php/Top 10-2017 A1-Injection[97] ——, “Blind SQL Injection,” 2013. [Online]. Available: https://www.owasp.org/index.php/Blind SQL Injection[98] Oracle Corporation, “Prepared SQL Statement Syntax,” 2019. [Online]. Available:https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html[99] The PostgreSQL Global Development Group, “PostgreSQL: Documentation: 11: PRE-PARE,” 2019. [Online]. Available: https://www.postgresql.org/docs/current/sql-prepare.html[100] DHS and CISA, “CVE - common vulnerabilities and exposures,” 2019. [Online]. Available:https://cve.mitre.org/[101] J. Reschke, “Use of the Content-Disposition Header Field in the Hypertext TransferProtocol (HTTP),” Internet Request for Comments, Internet Engineering Task Force(IETF), RFC, June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6266[102] “Cross-site scripting,” April 2019. [Online]. Available: https://developer.mozilla.org/en-US/docs/Glossary/Cross-site scripting[103] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site requestforgery,” in Proceedings of the 15th ACMConference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA: ACM, 2008, pp. 75–88. [Online]. Available:http://doi.acm.org/10.1145/1455770.1455782[104] I. Synopsis, “The heartbleed bug,” http://heartbleed.com/, 2014.[105] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,

KA Web & Mobile Security | October 2019 Page 39

https://www.cybok.org
https://doi.org/10.1109/CNS.2019.8802671
http://doi.acm.org/10.1145/1772690.1772720
http://doi.acm.org/10.1145/3243734.3243778
https://www.cybok.org/
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://cve.mitre.org/
https://tools.ietf.org/html/rfc6266
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
http://doi.acm.org/10.1145/1455770.1455782


The Cyber Security Body Of Knowledge
www.cybok.org

D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of Heartbleed,”in Proceedings of the 2014 Conference on Internet Measurement Conference, ser.IMC ’14. New York, NY, USA: ACM, 2014, pp. 475–488. [Online]. Available:http://doi.acm.org/10.1145/2663716.2663755[106] Z. Su and G. Wassermann, “The essence of command injection attacks in webapplications,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,pp. 372–382. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111070[107] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to defeat cross-sitescripting attacks,” Comput. Secur., vol. 31, no. 4, pp. 612–628, Jun. 2012. [Online].Available: http://dx.doi.org/10.1016/j.cose.2011.12.004[108] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL landscape: A thoroughanalysis of the X.509 PKI using active and passive measurements,” in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference,ser. IMC ’11. New York, NY, USA: ACM, 2011, pp. 427–444. [Online]. Available:http://doi.acm.org/10.1145/2068816.2068856[109] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why Eve and Mallory (also) love webmasters:A study on the root causes of SSL misconfigurations,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security, ser.ASIA CCS ’14. New York, NY, USA: ACM, 2014, pp. 507–512. [Online]. Available:http://doi.acm.org/10.1145/2590296.2590341[110] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, ““I have no ideawhat I’m doing” - on the usability of deploying HTTPS,” in 26th USENIX Security
Symposium (USENIX Security 2017), August 2017, p. 1338. [Online]. Available:https://publications.cispa.saarland/2654/[111] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz, ““If HTTPS weresecure, i wouldn’t need 2FA” - end user and administrator mental models of HTTPS,”in S&P 2019, May 2019. [Online]. Available: https://publications.cispa.saarland/2788/[112] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hardArgon2 password hash and proof-of-work function,” Internet Engineering Task Force,Internet-Draft draft-irtf-cfrg-argon2-08, Oct. 2019, work in Progress. [Online]. Available:https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08[113] S. Josefsson, “PKCS #5: Password-Based Key Derivation Function 2 (PBKDF2) TestVectors,” RFC 6070, Jan. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6070.txt[114] OWASP, “OWASP - password storage cheat sheet,” 2019. [Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/Password Storage Cheat Sheet.html[115] Wikipedia contributors, “List of data breaches — Wikipedia, the free encyclopedia,”2019. [Online]. Available: https://en.wikipedia.org/wiki/List of data breaches[116] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi, B. Benko,T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein, “Protecting accounts fromcredential stuffing with password breach alerting,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.1556–1571. [Online]. Available: https://www.usenix.org/conference/usenixsecurity19/presentation/thomas

KA Web & Mobile Security | October 2019 Page 40

https://www.cybok.org
http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/1111037.1111070
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://doi.acm.org/10.1145/2068816.2068856
http://doi.acm.org/10.1145/2590296.2590341
https://publications.cispa.saarland/2654/
https://publications.cispa.saarland/2788/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08
https://rfc-editor.org/rfc/rfc6070.txt
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas

	1 Introduction
	2 Fundamental Concepts and Approaches
	2.1 Appification
	2.2 Webification
	2.2.1 Uniform Resource Locators
	2.2.2 Hypertext Transfer Protocol
	2.2.3 Hypertext Markup Language
	2.2.4 Cascading Style Sheets
	2.2.5 JavaScript
	2.2.6 WebAssembly
	2.2.7 WebViews

	2.3 Application Stores
	2.4 Sandboxing
	2.4.1 Application Isolation
	2.4.2 Content Isolation

	2.5 Permission Dialog Based Access Control
	2.5.1 The Security Principals
	2.5.2 The Reference Monitor
	2.5.3 The Security Policy
	2.5.4 Different Permission Approaches

	2.6 Web PKI and HTTPS
	2.7 Authentication
	2.7.1 HTTP Authentication
	2.7.2 Mobile Device Authentication

	2.8 Cookies
	2.9 Passwords and Alternatives
	2.9.1 Password Policies
	2.9.2 Password Strength Meters
	2.9.3 Password Managers
	2.9.4 Multi-Factor Authentication
	2.9.5 WebAuthn
	2.9.6 OAuth

	2.10 Frequent Software Updates

	3 Client Side Vulnerabilities and Mitigations
	3.1 Phishing & Clickjacking
	3.1.1 Phishing
	3.1.2 Clickjacking

	3.2 Client Side Storage
	3.2.1 Client Side Storage in the Browser
	3.2.2 Client Side Storage in Mobile Applications

	3.3 Physical Attacks
	3.3.1 Smudge attacks
	3.3.2 Shoulder Surfing


	4 Server Side Vulnerabilities and Mitigations
	4.1 Injection Vulnerabilities
	4.1.1 SQL-Injection
	4.1.2 Command Injections
	4.1.3 User Uploaded Files
	4.1.4 Local File Inclusion
	4.1.5 Cross-Site Scripting (XSS)
	4.1.6 Cross-Site Request Forgery

	4.2 Server Side Misconfigurations & Vulnerable Components
	4.2.1 Firewall
	4.2.2 Load Balancers
	4.2.3 Databases


	5 Conclusion

