Web & Mobile Security
Knowledge Area
Issue 1.0

Sascha Fahl | Leibniz University Hannover

EDITOR
Emil Lupu | Imperial College London

REVIEWERS

Alastair Beresford | University of Cambridge

Sven Bugiel | CISPA Helmholtz Center for Information Security
Hao Chen | University of California, Davis

Paul Freemantle | WSO,

Marco Viera | University of Coimbra

I The Cyber Security Body Of Knowledge cyBGK

COPYRIGHT

© Crown Copyright, The National Cyber Security Centre 2019. This information is licensed
under the Open Government Licence v3.0. To view this licence, visit:
http://www.nationalarchives.gov.uk/doc/open-government-licence/ oGt

When you use this information under the Open Government Licence, you should include the
following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li-
censed under the Open Government Licence: http:/www.nationalarchives.gov.uk/doc/open-
government-licence/.

The CyBOK project would like to understand how the CyBOK is being used and its uptake.
The project would like organisations using, or intending to use, CyBOK for the purposes of
education, training, course development, professional development etc. to contact it at con-
tact@cybok.org to let the project know how they are using CyBOK.

Issue 1.0 is a stable public release of the Web & Mobile Security Knowledge Area. However,
it should be noted that a fully-collated CyBOK document which includes all of the Knowledge
Areas is anticipated to be released by the end of July 2019. This will likely include updated
page layout and formatting of the individual Knowledge Areas

I KA Web & Mobile Security Page 1

https://www.cybok.org
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
http://www.nationalarchives.gov.uk/doc/open-government-licence/
mailto:contact@cybok.org
mailto:contact@cybok.org

I The Cyber Security Body Of Knowledge cyBGK

1 INTRODUCTION

The purpose of this Knowledge Area is to provide an overview of security mechanisms, at-
tacks and defences in modern web and mobile ecosystems. This overview is intended for
use in academic courses and to guide industry professionals interested in this area.

Web and mobile security have become the primary means through which many users interact
with the Internet and computing systems. Hence, theirimpact on overall information security
is significant due to the sheer prevalence of web and mobile applications (apps). Covering
both web and mobile security, this Knowledge Area emphasises the intersection of their secu-
rity mechanismes, vulnerabilities and mitigations. Both areas share a lot in common and have
experienced a rapid evolution in the features and functionalities offered by their client side
applications (apps). This phenomenon, sometimes called appification, is a driver in modern
web and mobile ecosystems. Web and mobile client apps typically interact with server side
application interfaces using web technologies. This second phenomenon, also sometimes
called webification, equally affects both web and mobile ecosystems. In the 1990s, web and
mobile security had a strong focus on server-side and infrastructure security. Web browsers
were mostly used to render and display static websites without dynamic content. The focus
on the server-side prevailed even with the rise of early scripting languages such as Perl and
PHP. However, web content became more dynamic in the 2000s, and server-side security
had to address injection attacks. Similarly to web browsers, early mobile devices had limited
functionality and were mostly used to make calls or send SMS. Mobile security back then
focused on access control, calls and SMS security.

Therise of modern web and mobile platforms brought notable changes. A significant amount
of web application code is no longer executed on the server-side but runs in the browser.
Web browser support for Java, Adobe Flash, JavaScript and browser plugins and extensions
brought many new features to the client, which prompted a drastic change of the attack sur-
face on the web. New types of attacks such as Cross-Site Scripting emerged and plugins
proved to be vulnerable, e.g. Adobe Flash browser plugins are known for being an attractive
target for attackers. In response to these new threats, browser vendors and website devel-
opers and operators took measures. For instance, Google Chrome disabled the Adobe Flash
plugin by default in 2019 [1] and new security best practices were developed [2]. Similarly
to web browsers, mobile devices became smarter and more feature-rich. Smartphones and
tablets are equipped with sensors, including motion, GPS and cameras. They have extensive
computing power, storage capacity and are connected to the Internet 24-7. Modern Android
and iOS devices run full-blown operating systems and increasingly feature-rich and complex
application frameworks. Mobile apps can request access to all the devices’ resources and
sensors using permission based access control, and process highly sensitive user informa-
tion. Being powerful, feature-rich, and connected makes mobile clients promising and attrac-
tive targets for attackers.

Modern web and mobile ecosystems are the primary drivers for the rise of appification and
the “there is an app for everything” motto sums up many of the technological and security de-
velopments in recent years. The appification trend resulted in millions of apps ranging from
simple flashlight apps to online social network apps, from online banking apps to mobile
and browser-based games. It also sparked the merging of technologies and security mech-
anisms used in web and mobile applications. Both ecosystems are typically client-server

I KA Web & Mobile Security Page 2

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

oriented. Web browsers and mobile apps communicate with back-end services often using
web focused technologies. Communication is mostly based on the Hypertext Transfer Pro-
tocol (HTTP) and its secure extension HTTPS. Both web-browsers and mobile applications
tend to primarily exchange Hyptertext Markup Language (HTML), JSON and XML documents
and both make extensive use of the JavaScript programming language, on the server- and
the client-side. Webification describes the conversion to these web technologies.

The sheer amount of applications in modern web and mobile ecosystems also impacted
the software distribution model, which moved away from website downloads to centralised
application stores, which allow developers to publish, advertise and distribute their software,
and users to download new apps and app updates. The centralised software distribution had
a positive impact on update frequencies and speed for both web and mobile.

This Knowledge Area focuses on the appification trend and an introduction to the core tech-
nologies of the webification phenomenon. Figure 1 provides an overview of the entities in-
volved and their interactions.

Server Side
s - OO0
a Web Server
Develop web
applications
and configure
Publish apps and D D D \\ L] infrastructure
push updates D D D ||
[) [) i . 900
D D D <title>This is an example</titie> 2
P — —_— </head> 8
D D D <script src="myscripts.js"></script> g
<body>
Devs Dy Users % Devs/Ops
pps </body> 5
</htmi> 2
[
— |
Mobile Device Web Browser
Client Side

Figure 1: Web and Mobile Ecosystem

After introducing core technologies and concepts, we describe important security mecha-
nisms and illustrate how they differ from non-web and non-mobile ecosystems. Software
and content isolation are crucial security mechanisms and aim to protect apps and web-
sites from malicious access. While isolation is understood in relation to traditional operating
systems (cf. the Operating Systems & Virtualisation CyBOK Knowledge Area [3]), specifics
for web and mobile platforms will be outlined.

Modern web and mobile platforms introduced new forms of access control based on per-
mission dialogues. Whilst a more general discussion of access control is included in the
Authentication, Authorisation & Accountability (AAA) CyBOK Knowledge Area [4], this Knowl-
edge Area discusses web and mobile specifics. Web and mobile applications make extensive
use of the HTTP and HTTPS protocols. Hence, we will discuss the Web Public-Key Infrastruc-
ture (PKI) and HTTPS extending the Transport Layer Security (TLS) section in the Network

I KA Web & Mobile Security Page 3

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

Security CyBOK Knowledge Area [5]. Similarly, we will discuss web and mobile-specific au-
thentication aspects, referring readers to the Authentication, Authorisation & Accountability
(AAA) CyBOK Knowledge Area [4] for a more general discussion of authentication. Finally, we
address frequent software updates as a crucial security measure. While software updates
are equally important in traditional computer systems, the centralisation’ of web and mobile
ecosystems, introduces new challenges and opportunities.

The following sections focus on web and mobile-specific client and server-side security as-
pects. However, we will not address common software vulnerabilities (cf. the Software Se-
curity CyBOK Knowledge Area [6]) and operating system security (cf. Operating Systems
& Virtualisation CyBOK Knowledge Area [3]) in general. Section 3 first covers phishing and
clickjacking attacks and defenses. Both affect web and mobile clients and exploit human
difficulties in correctly parsing URLs or identifying changes in the visual appearance of web-
sites. As feature-rich web and mobile clients store sensitive data, we will then discuss client-
side storage security issues and mitigations. Finally, Section 3 discusses physical attacks on
mobile clients, including smudge attacks and shoulder surfing. Section 4 addresses server-
side challenges, starting with an overview of frequent injection attacks. We discuss SQL and
command injection attacks that allow malicious users to manipulate database queries to
storage backends of web applications and commands that are executed. This is followed
by a discussion of cross-site scripting and cross-site request forgery attacks and common
server-side misconfigurations that might lead to vulnerable service backends.

Overall, the discussion of client- and server-side security challenges aims to serve as the
underlining of the natural split between entities in web and mobile ecosystems. Additionally,
the chosen aspects illustrate the difference between the web and mobile world from other
ecosystems.

Due to its focus on the intersection of both web and mobile security, this Knowledge Area
does not cover aspects that are unique to either web or mobile such as mobile device security,
mobile network (i. e., 2G/3G/4G/5G) security (see Physical Layer and Telecommunications
CyBOK Knowledge Area [7]), and mobile malware. Some of these aspects are discussed in
the Hardware Security CyBOK Knowledge Area [8], the Malware & Attack Technology CyBOK
Knowledge Area [9] and the Network Security CyBOK Knowledge Area [5]. We also do not
discuss side-channel attacks; the concept and examples for side-channel security are given
in the Hardware Security CyBOK Knowledge Area [8].

2 FUNDAMENTAL CONCEPTS AND APPROACHES

[10,11,12,13,14, 15, 16,17, 18]

This section describes fundamental concepts and approaches of modern web and mobile
platforms that affect security. The information presented in this section is intended to serve
as a foundation to better understand the security challenges in the following sections. Sim-
ilar to other software products and computer systems, mobile operating systems and appli-
cations and web browsers as well as web servers may contain exploitable bugs. General
purpose software vulnerabilities are discussed in the Software Security CyBOK Knowledge
Area [6].

TThere are only a limited number of widely used web browsers and application stores.

I KA Web & Mobile Security Page 4

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

2.1 Appification

Over the lastten years, the rise of mobile devices and ubiquitous Internet access have changed
the way software is produced, distributed and consumed, altering how humans interact with

computer devices and with software installed on the devices. While regular Internet browsers

have been the dominant way of accessing content on the web in the pre-mobile era, the con-
cept of appification significantly changed the way users access content online [11]. Appifica-
tion describes the phenomenon of moving away from a web-based platform to access most

digital tools and media online with a web-browser through mobile applications with highly

specialised, tiny feature sets. As mobile devices grew to become the primary interface for

web access worldwide [19], the number of apps rose enormously over the last decade. “There

is an app for everything” became the mantra of appified software ecosystems, which pro-
duced numerous applications for all sorts of use cases and application areas. Many apps

look like native local desktop or mobile applications. However, they are often (mobile) web

applications that communicate with back end services, which then outsource computation

and storage tasks to the client. The shift towards appification had a significant impact on

web and mobile security creating more security challenges on the client-side. The rise of

appification also impacted the developer landscape. In the pre-appification era, software de-
velopment was mostly dominated by experienced developers. Due to the more extensive tool

and framework support, the market entrance barrier is lower in appified ecosystems. This at-
tracts more inexperienced developers, and has negative consequences for web and mobile

security in general (cf. the Human Factors CyBOK Knowledge Area [20]).

The Rise of the Citizen Developer The appification trend attracts many non-professional
software developers called citizen developers. Many of them do not have a software engineer-
ing education but make use of multiple simple APIs and tools available to build apps for different
platforms. Oltrogge et al. [21] found that the adoption of easy-to-use Online Application Genera-
tors (OAGs) to develop, distribute and maintain apps has a negative impact on application security.
Generated apps tend to be vulnerable to reconfiguration and code injection attacks and rely on an
insecure infrastructure.

2.2 Webification

Modern web and mobile platforms gave rise to another phenomenon. Many of the applica-
tions are not native applications written in compiled programming languages such as Java or
Kotlin and C/C++ (e. g. for Android apps) or Objective-C and Swift (e. g. foriOS apps). Instead,
they are based on web technologies including server-side Python, Ruby, Java or JavaScript
scripts and client-side JavaScript. In addition to conventional web applications targeting
regular web browsers, mobile web applications are more frequently built using these web
technologies. In particular, mobile web applications make heavy use of the JavaScript lan-
guage.

This section gives a brief introduction to the most essential technologies needed to explain
vulnerabilities and mitigations later in the KA. We include Uniform Resource Locators (URLS),
the Hypertext Transfer Protocol (HTTP), the Hyptertext Markup Language (HTML), Cascading
Style Sheets (CSS) and the JavaScript programming language. For more detailed information,
we suggest reading [22].

I KA Web & Mobile Security Page 5

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

2.2.1 Uniform Resource Locators

Uniform Resource Locators (URLs) [12] are a core concept in the web. A URL is a well-formed
and fully qualified text string that addresses and identifies a resource on a server. Address
bars in modern browser User Interfaces (Uls) use the URLs to illustrate the remote address
of a rendered document. A fully qualified absolute URL string consists of several segments
and contains all the required information to access a particular resource. The syntax of an
absolute URL is: scheme://credentials@host:port/resourcepath?query_parameters#fragments. Each
segment has a particular meaning (cf. Table 1).

Segment Optional Description

scheme: o) Indicates the protocol a web client should use to retrieve a resource.
Common protocols in the web are http: and https:

// o) Indicates a hierarchical URL as required by [12]

credentials@) Can contain a username and password that might be needed to

retrieve a resource from a remote server.

host o Specifies a case-insensitive DNS name (e. g. cybok.org), a raw |Pv4
(e.g. 127.0.0.7) or IPv6 address (e. g. [0:0:0:0:0:0:0:1]) to indicate the
location of the server hosting a resource.

:port) Describes a non-default network port number to connect to a
remote server. Default ports are 80 for HTTP and 443 for HTTPS.

/resourcepath (o) Identifies the resource address on a remote server. The resource
path format is built on top of Unix directory semantics.

?query_parameters) Passes non-hierarchical parameters to a remote resource, such as
server-side script input parameters.

#fragment) Provides instructions for the browser. In practice, it is used to
address an HTML anchor element for in-document navigation.

Table 1: URL segments.

2.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the most widely used mechanism to exchange
documents between servers and clients on the web. While HTTP is mostly used to transfer
HTML documents, it can be used for any data. Although HTTP/2.0 [23] is the newest protocol
revision, the most widely supported protocol version is HTTP/1.1[10]. HTTP is a text-based
protocol using TCP/IP. An HTTP client initiates a session by sending an HTTP request to an
HTTP server. The server returns an HTTP response with the requested file.

The first line of a client request includes HTTP version information (e.g. HTTP/1.1). The
remaining request header consists of zero or more name : value pairs. The pairs are sep-
arated by a new line. Common request headers are User-Agent — these include browser in-
formation, Host — the URL hostname, Accept — which carries all supported document types,
Content-Length — the length of the entire request and Cookie — see Section 2.8. The re-
quest header is terminated with a single empty line. HTTP clients may pass any additional
content to the server. Although the content can be of any type, clients commonly send HTML
content to the server, e.g. to submit form data. The HTTP server responds to the request
with a response header followed by the requested content. The response header contains
the supported protocol version, a numerical status code, and an optional, human-readable

I KA Web & Mobile Security Page 6

https://www.cybok.org
scheme://credentials@host:port/resourcepath?query_parameters#fragments

I The Cyber Security Body Of Knowledge cyBGK

status message. The status notification is used to indicate request success (e.g. status
200), error conditions (e. g. status 404 or 500) or other exceptional events. Response head-
ers might also contain Cookie headers — cf. Section 2.8. Additional response header lines
are optional. The header ends with a single empty line followed by the actual content of the
requested resource. Similar to the request content, the content may be of any type but is
often an HTML document.

Although cookies were not part of the original HTTP RFC [10], they are one of the most impor-
tant protocol extensions. Cookies allow remote servers to store multiple name=value pairs
in client storage. Servers can set cookies by sending a Set-Cookie: name=value response
header and consume them by reading a client’s Cookie: name=value request header. Cookies
are a popular mechanism to maintain sessions between clients and servers and to authenti-
cate users.

HTTP is request-response based and neatly fits unidirectional data transfer use cases. How-
ever, for better latency and more effective use of bandwidth, bidirectional network connec-
tions are needed. Bidirectional connections not only allow clients to pull data from the server,
but also the server to push data to the client at any time. Therefore, the WebSocket proto-
col [24] provides a mechanism on top of HTTP. WebSocket connections start with a regular
HTTP request that includes an Upgrade: WebSocket header. After the WebSocket hand-
shake is completed, both parties can send data at any time without having to run a new
handshake.

2.2.3 Hypertext Markup Language

The Hyptertext Markup Language (HTML) [13] is the most widely used method to produce
and consume documents on the web. The most recent version is HTMLS. The HTML syn-
tax is fairly straightforward: a hierarchical tree structure of tags, name=value tag parameters
and text nodes form an HTML document. The Domain Object Model (DOM) defines the log-
ical structure of an HTML document and rules how it is accessed and manipulated. How-
ever, competing web browser vendors introduced all sorts of custom features and modified
the HTML language to their wishes. The many different and divergent browser implementa-
tions resulted in only a small portion of the websites on the Internet adhering to the HTML
standard’s syntax. Hence, implementations of HTML parsing modes and error recovery vary
greatly between different browsers.

The HTML syntax comes with some constraints on what may be included in a parameter
value or inside a text node. Some characters (e. g., angle brackets, single and double quotes
and ampersands) make the blocks of the HTML markup. Whenever they are used for a dif-
ferent purpose, such as parts of substrings of a text, they need to be escaped. To avoid
undesirable side effects, HTML provides an entity encoding scheme. However, the failure to
properly apply the encoding to reserved characters when displaying user-controlled informa-
tion may lead to severe web security flaws such as cross-site scripting (cf. Section 4).

I KA Web & Mobile Security Page 7

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

2.2.4 Cascading Style Sheets

Cascading Style Sheets (CSS) [25] are a consistent and flexible mechanism to manipulate
the appearance of HTML documents. The primary goal of CSS was to provide a straight-
forward and simple text-based description language to supersede the many vendor-specific
HTML tag parameters that lead to many inconsistencies. However, similar to divergent HTML
parsing implementations, different browsers also implement different CSS parsing behavior.
CSS allows HTML tags to be scaled, positioned or decorated without being limited by the
original HTML markup constraints. Similar to HTML tag values, values inside CSS can be
user-controlled or provided externally, which makes CSS crucial for web security.

2.2.5 JavaScript

JavaScript [14] is a simple yet powerful object-oriented programming language for the web.
It runs both client-side in web browsers and server-side as part of web applications. The lan-
guage is meant to be interpreted at runtime and has a C-inspired syntax. JavaScript supports
a classless object model, provides automatic garbage collection and weak and dynamic typ-
ing. Client-side JavaScript does not support I/0 mechanisms out of the box. Instead, some
limited predefined interfaces are provided by native code inside the browser. Server-side
JavaScript (e. g., Node.js [26]) supports a wide variety of I/0 mechanisms, e. g., network and
file access. The following discussion will focus on client JavaScript in web browsers. Ev-
ery HTML document in a browser is given its JavaScript execution context. All scripts in a
document context share the same sandbox (cf. Section 2.4). Inter-context communication
between scripts is supported through browser-specific APls. However, execution contexts
are strictly isolated from each other in general. All JavaScript blocks in a context are exe-
cuted individually and in a well-defined order. Script processing consists of three phases:

Parsing validates the script syntax and translates it to an intermediate binary representation
for performance reasons. The code has no effect until parsing is completed. Blocks
with syntax errors are ignored, and the next block is parsed.

Function Resolution registers all named, global functions the parser found in a block. All
registered functions can be reached from the following code.

Execution runs all code statements outside of function blocks. However, exceptions may
still lead to execution failures.

While JavaScript is a very powerful and elegant scripting language, it brings up new chal-
lenges and security issues such as Cross-Site Scripting vulnerabilities (cf. Section 4.1).

2.2.6 WebAssembly

WebAssembly (Wasm) [27] is an efficient and fast binary instruction format and is supported
by most modern browser vendors. It is a stack-based virtual machine language and mainly
aims to execute at native speed on client machines. Code written in WebAssembly is mem-
ory safe and benefits from all security features provided by regular code associated with a
website. WebAssembly code is sandboxed, enforces the same origin policy (cf. Section 2.4)
and is limited to the resources provided by the corresponding website’s permissions. Addi-
tionally, WebAssembly code can access JavaScript code running in the same origin container
and provide its functionality to JavaScript code from the same origin.

I KA Web & Mobile Security Page 8

https://www.cybok.org

I The Cyber Security Body Of Knowledge CVBGK

2.2.7 WebViews

WebViews are a further trend in webification and mobile apps. They allow the easy integra-
tion of web content into mobile apps [28]. Developers can integrate apps with HTML and
JavaScript and benefit from portability advantages. WebViews run in the context of regular
mobile apps and allow a rich two-way interaction with the hosted web content. Mobile apps
can invoke JavaScript from within the web content, and monitor and intercept events in the
web content. At the same time, specific JavaScript APIs allow WebView apps to interact with
content and sensors outside the WebView context. The interaction of web content with na-
tive app content raises new security concerns and enables both app-to-web and web-to-app
attacks [29, 30, 31]. App-to-web attacks, allow malicious apps to inject JavaScript into hosted
WebViews with the goal to exfiltrate sensitive information or trick WebViews into navigating
to and presenting users with untrusted and potentially malicious websites. Web-to-app at-
tacks inject untrusted web content into an app and leverage an app’s JavaScript bridge to
the underlying host app. The goal of a web-to-app attack is privilege escalation to the level
of its hosting app'’s process.

Both the appification and webification phenomena led to a new way of software distribu-
tion. Instead of decentralised download sources, centralised application stores which are
illustrated in the next section emerged.

2.3 Application Stores

Application stores are centralised digital distribution platforms that organise the manage-
ment and distribution of software in many web and mobile ecosystems. Famous examples
are the Chrome web store for extensions for the Chrome browser, Apple’'s AppStore for iOS
applications, and Google Play for Android applications. Users can browse, download, rate
and review mobile applications or browser plugins and extensions. Developers can upload
their software to application stores that manage all of the software distribution challenges,
including the provision of storage, bandwidth and parts of the advertisement and sales. Be-
fore publication, most application stores deploy application approval processes for testing
reliability, adherence to store policies, and for security vetting [32, 33].

Most of the software available in ecosystems that have application stores is distributed
through the stores. Only a few users side-load software (i.e. install software from other
sources than the store). Application stores allow providers to control which applications are
available in their stores, which allows them to ban particular applications. Whilst this can
give rise to accusations of censorship, the deployment of security vetting techniques has
helped to significantly reduce the amount of malicious software available in stores [32] and
to reduce the number of applications that suffer from vulnerabilities due to the misuse of
security APIs by developers [34]. Deployed security vetting techniques include static and
dynamic analysis applied to application binaries and running instances of applications. In
addition to security vetting techniques, application stores require applications to be signed
by developer or application store keys. In Android, application signing does not rely on the
same public key infrastructures used on the web. Instead, developers are encouraged to use
self-signed certificates and required to sign application updates with the same key to prevent
malicious updates [35]. The application signing procedure on iOS devices requires apps to
be signed by Apple. Unsigned apps cannot be installed on iOS devices. Application stores
not only allow developers and users centralised access to software publication, distribution
and download, they also enable users to rate and review published applications. User rating
and reviews are intended to help other users make more informed download decisions, but

I KA Web & Mobile Security Page 9

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

they also have a direct connection to application security.

Impact of User Ratings and Reviews on Application Security Nguyen et al. [36] con-
ducted a large-scale analysis of user reviews for Android applications and theirimpact on security
patches. They found that the presence of security- and privacy-related user reviews for applica-
tions are contributing factors to future security-related application updates.

2.4 Sandboxing

Both modern mobile and browser platforms make use of different sandboxing techniques to
isolate applications and websites and their content from each other (cf. Operating Systems
& Virtualisation CyBOK Knowledge Area [3]) [37, 38]. This also aims to protect the platform
against malicious applications and sites. Major web browsers (e.g. Google Chrome [39])
and mobile platforms (e.g. Android [40]) implement isolation at an operating system process
level. Each application or website runs in its own process 2. By default, isolated processes
cannotinteract with each other and cannot share resources. In browsers, site isolation serves
as a second line of defence as an extension to the same-origin-policy (cf. Section 2.4.2).

2.4.1 Application Isolation

Modern mobile platforms provide each application with their sandbox running in a dedicated
process and their own file-system storage. Mobile platforms take advantage of underlying
operating system process protection mechanisms for application resource identification and
isolation. For example, application sandboxes in Android [40] are set-up at kernel-level. Secu-
rity is enforced through standard operating system facilities, including user and group IDs as
well as security contexts. By default, sandboxing prevents applications from accessing each
other and only allows limited access to operating system resources. To access protected
app and operating system resources inter-app communication through controlled interfaces
is required.

2.4.2 Content Isolation

Contentisolation is one of the major security assurances in modern browsers. The mainidea
is to isolate documents based on their origin so that they cannot interfere with each other.
The Same-Origin-Policy (SOP) [41] was introduced in 1995 and affects JavaScript and its in-
teraction with a document’s DOM, network requests and local storage (e. g., cookies). The
core idea behind SOP is that two separate JavaScript execution contexts are only allowed to
manipulate a document’s DOM if there is an exact match between the document host and the
protocol, DNS name and port numbers®. Cross-origin manipulation requests are not allowed.
Table 2 illustrates sample SOP validation results. Similar to JavaScript-DOM-interaction, the
SOP limits the JavaScript XMLHt tpRequest capabilities to only issue HTTP requests to the
origin of the host document.

One major flaw of SOP is that it relies on DNS instead of IP addresses. Attackers who can
intentionally change the IP address of a DNS entry can therefore circumvent SOP security
guarantees.

2Process-based site isolation is mostly used on desktop computers [39].
3The protocol, DNS name and port number triple is called origin.

I KA Web & Mobile Security Page 10

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

Originating document Accessed document Browser behaviour
https://www.cybok.org/docs/ https://www.cybok.org/scripts/ Access okay
https://www.cybok.org/ https://books.cybok.org/ Host mismatch
http://www.cybok.org/ https://www.cybok.org/ Protocol mismatch
https://www.cybok.org/ https://www.cybok.org:10443/ Port mismatch

Table 2: SOP validation examples.

Since code that enforces the same-origin-policy occasionally contains security bugs, modern
browsers introduced a second line of defence: websites are rendered in their own processes
that run in a sandbox. Sandboxing websites is meant to prevent attacks such as stealing
cross-site cookies and saved passwords [42].

Another additional layer of defence to enforce the same-origin policy and improve web ap-
plication security is the Content Security Policy (CSP) mechanism [43]. A CSP is primarily
intended to prevent code injection attacks such as XSS (cf. Section 4.1), which exploit the
browsers’ trust of content that was sent by a web server. This allows malicious scripts to be
executed in clients’ browsers. CSP allows web developers and server operators to limit the
number of origins that browsers should consider to be trusted sources of content — includ-
ing executable code and media files. A CSP can be used so that servers can globally disable
code execution on the client. To enable CSP, developers or operators can either configure a
web server to send a Content-Security-Policy HTTP response header or add a HTML
imeta; tag to a website. Compatible browsers will then only execute code or load media
files from trusted origins.

Example: Content Security Policy Header The following CSP allows users of a web appli-
cation to include images from any origin, but to restrict media data (audio or video media) to
the trusted trusted-media.com domain. Additionally, scripts are restricted to the trusted-scripts.com
origin that the web developer trusts:

Content-Security-Policy: default-src ’'self’; img-src *; media-src
trusted-media.com; script-src trusted-scripts.com

2.5 Permission Dialog Based Access Control

Permission systems in modern mobile and web platforms enable protection of the privacy of
their users and reduce the attack surface by controlling access to resources. The control of
access to resources on a traditional computer system requires the accurate definition of all
involved security principals and the protected resources in the system. Finally, an access con-
trol system requires a non-bypassable and trusted mechanism to evaluate access requests
(the reference monitor) and sound security policies that define the appropriate course of ac-
tion for all access requests. Based on the security policies, the reference monitor can decide
whether it grants access or denies access (cf. the Authentication, Authorisation & Account-
ability (AAA) CyBOK Knowledge Area [4]).

Modern mobile and web platforms deviate from conventional computer systems in multiple
ways:

I KA Web & Mobile Security Page 11

https://www.cybok.org
trusted-media.com
trusted-scripts.com

I The Cyber Security Body Of Knowledge cyBGK

2.5.1 The Security Principals

Traditional computer systems are primarily multi-user systems with human users and pro-
cesses running on their behalf. Modern mobile and web platforms extend conventional multi-
user systems to also consider all involved developers that have their applications installed
on the system as security principals.

2.5.2 The Reference Monitor

Typically, conventional computer systems implement access control as part of the Operating
System (0S), e.g., the file system and network stack. User-level processes can then extend
this OS functionality and implement their own access control mechanisms.

Like conventional computer systems, modern mobile and web platforms build on top of
OS low-level access control mechanisms. Additionally, the extensive frameworks on top of
which applications are developed and deployed, provide extended interfaces. Modern web
and mobile platforms use Inter-Process Communication (IPC) for privilege separation and
compartmentalisation between apps and between apps and the operating system instead
of allowing direct access to resources. Access control mechanisms on calling processes
are used to protect IPC interfaces.

2.5.3 The Security Policy

In conventional computer systems, a process can have different privilege levels. It can run
as the superuser, as a system service, with user-level privileges or with guest privileges*. All
processes that share the same privilege level have the same set of permissions and can
access the same resources.

Modern mobile and web platforms make a clear distinction between system and third-party
applications: access to security- and privacy-critical resources is only granted to designated
processes and third-party applications have, by default, no access to critical resources. If
such access is required, application developers must request permissions from a set com-
monly available to all third-party applications. Most permissions allow developers to use
designated system processes as deputies to access protected sensitive resources. Those
system processes serve as reference monitors and enforce access control policies.

2.5.4 Different Permission Approaches

Mobile and web platforms implement distinct permission approaches. First, platforms dis-
tinguish different privilege levels. A common distinction is two levels (e.g., as implemented
on Android): normal (e.g., access to the Internet) and dangerous permissions (e.g., access to
the camera or microphone). While application developers have to request both normal and
dangerous permissions to grant their applications access to the respective resources, the
levels differ for application users. Normal permissions are granted silently without any appli-
cation user interaction. However, whenever applications require dangerous permissions, the
underlying mobile or web platform presents users with permission dialogues. While earlier
Android versions showed users a list of all the necessary permissions of an application at in-
stall time, modern mobile platforms and browsers present permission dialogues at run-time.
A permission dialog usually is shown the first time an application requests access to the cor-
responding resource. Application users can then either grant or deny the application access

“Depending on the system, more levels may be implemented.

I KA Web & Mobile Security Page 12

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

to the resource. Modern permission-based access control systems allow greater flexibility
and control for both developers and users.

) :ﬁ» & Mozilla Foundation (US) | https:/faddons.mozilla.org

Add Permissions Example?

It requires your permission to: .) o R
(i :i-:i- Extension (Permissions Example) moz-extension://

* Access your data for all websites
* Read and modify privacy settings * Permissions Example requests additional permissions.
® Access browser tabs

Store unlimited amount of client-side data

It wants to:

® Access browser activity during navigation * Access browsing history 1
(a) Install permissions (b) Runtime permissions

Figure 2: Firefox Permission Dialogues

Example App

needs access to
Allow Example to

take pictures and

In- h v i
$ In-app purchases record video?

BN Photos/Media/Fil
L otos/Media/Files v [] pont ask again

Google Play G Pay ACCEPT DENY ALLOW

(a) Install permissions that can still be found (b) Runtime permissions on modern apps
on legacy apps

Figure 3: Android Permission Dialogues

Permission Dialogues: Attention, Comprehension and Behaviour While permission dia-
logues theoretically allow for greater flexibility and control, in practice they tend to have serious
limitations. Porter Felt et al. found that Android applications developers tend to request more
permissions for their applications than needed [15]. Hence, applications request access to more
resources than strictly necessary, which violates the least-privilege principle. Similarly to develop-
ers, end-users struggle with permission dialogues. Porter Felt et al. [44] found that they often do
not correctly understand permission dialogues and ignore them due to habituation (cf. the Human
Factors CyBOK Knowledge Area [20]).

I KA Web & Mobile Security Page 13

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

2.6 Web PKI and HTTPS

The web PKI and the HTTPS [16, 17] protocol play a central role in modern mobile and web
platforms, both of which are based on client-server architectures. In the web, web servers
or applications exchange information with browsers. On mobile platforms, apps exchange
information with backend (web) servers. In both cases, HTTPS should always be used for
secure network connections between clients and servers. To establish secure network con-
nections, the web public key infrastructure is used. Using the web PKI and X.509 certificates,
clients and servers can authenticate each other and exchange cryptographic key material
for further encrypted information transport. This KA will not provide further details on how
the authentication process and the key exchange procedures work in detail (cf. the Network
Security CyBOK Knowledge Area [5]). Rather, it gives an overview of aspects specific to web
and mobile platforms.

HTTPS is the most widely deployed secure network protocol on the web and mobile. It over-
lays HTTP on top of the TLS protocol to provide authentication of the server, and integrity
and confidentiality for data in transit. While HTTPS offers mutual authentication of servers
and clients based on X.509 certificates, the primary use is the authentication of the accessed
server. Similar to TLS, HTTPS protects HTTP traffic against eavesdropping and tampering
by preventing man-in-the-middle attacks. Since HTTPS encapsulates HTTP traffic, it protects
URLs, HTTP header information including cookies and HTTP content against attackers. How-
ever, it does not encrypt the IP addresses and port numbers of clients and servers. While
HTTPS can hide the information exchanged by clients and servers, it allows eavesdroppers
to learn the top-level domains of the websites browsers that users visit, and to identify the
backend servers that mobile apps communicate with.

Both web browsers and mobile apps authenticate HTTPS servers by verifying X.509 certifi-
cates signed by Certificate Authorities CAs. Browsers and mobile apps come with a list of
pre-installed certificate authorities or rely on a list of pre-installed CAs in the host operating
system. A pre-installed certificate authority list in modern browsers and on modern mobile
platforms typically contains hundreds of CAs. To be trusted, an HTTPS server certificate
needs to be signed by one pre-installed CA.°

Modern browsers present users with a warning message (e. g., see Figure 4) when the server
certificate could not be validated. The warning messages are intended to indicate a man-in-
the-middle attack. However, common reasons for warning messages are invalid certificates,
certificates that were issued for a different hostname, network errors between the client and
server and errors on the client such as misconfigured clocks [45]. In most cases, browser
users can click-through a warning message and visit a website even if the server certificate
could not be validated [46]. Browsers use coloured indicators in the address bar to display the
security information for a website. Websites loaded via HTTP, websites loaded via HTTPS
that load some of their content (e.g. CSS or JavaScript files) over an HTTP connection® and
sites that use an invalid certificate but for which the user clicked through a warning are dis-
played as insecure. HTTPS websites with a valid certificate are displayed with a correspond-
ing security indicator (e.g., see Figure 4). In contrast, users of mobile, non-browser apps
cannot easily verify whether an application uses the secure HTTPS protocol with a valid cer-
tificate. No visual security indicators similar to those used in browsers are available. Instead,
users have to trust application developers to take all the necessary security measures for
HTTPS connections.

5See the Network Security CyBOK Knowledge Area [5] for details on the validation process.
6Called mixed content.

I KA Web & Mobile Security Page 14

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

A

Your connection is not private

Attackers might be trying to steal your information from self-signed.badssl.com (for
example, passwords, messages, or credit cards). Learn more

NET:ERR_CERT_AUTHORITY_INVALID

[Help improve Safe Browsing by sending some system information and page content to Google.

Brivacy policy

Advanced Back to safety

(a) Warning message for invalid certificate in Chrome

A Not secure | hBitps//: & htips;, # Comodo Security Solutions, Inc. [US] | https://
(b) Invalid certificate (c) Valid and (d) Extended validation certificate
trusted certifi-
cate

Figure 4: Warning messages and security indicators in Chrome.

As of 2019, most of the popular websites support HTTPS, and the majority of connections
from clients to servers in the web and mobile applications use HTTPS to protect their users
against man-in-the-middle attacks. To further increase the adoption of HTTPS, server op-
erators are encouraged to use HTTPS for all connections and deploy HTTP Strict Transport
Security (HSTS) [47]. Additionally, browser users can install extensions and plugins to rewrite
insecure HTTP URLs to secure HTTPS URLs [48] if possible, and mobile application frame-
works make HTTPS the default network protocol for HTTP connections.

Using HTTPS does protect the content against attackers but does not preserve metadata
(e. g., which websites a user visits). Please refer to the Privacy & Online Rights CyBOK Knowl-
edge Area [49] for more information, including private browsing and the Tor network.

Rogue Certificate Authorities and Certificate Transparency The web PKI allows every
trusted root certificate authority to issue certificates for any domain. While this allows website
operators to freely choose a CA for their website, in the past some CAs have issued fraudulent
certificates for malicious purposes. One of the most prominent examples is the DigiNotar CA,
which in 2011 [50] issued fraudulent certificates for multiple websites including Google’s Gmail
service. Nobody has been charged for the attack. However, DigiNotar went bankrupt in 2011.
Certificate transparency [51] was introduced to fight fraudulent certificate issuance. Certificate
transparency provides a tamper proof data structure and monitors all certificate issuance pro-
cesses of participating CAs. While it cannot prevent fraudulent certificate issuance, it improves
the chances of detection. Clients can verify the correct operation of the certificate transparency
providers and should only connect to websites that use X.509 certificates that include a signed
certificate timestamp. Certificate transparency is supported by most major certificate authorities
and browser vendors.

I KA Web & Mobile Security Page 15

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

2.7 Authentication

Authentication in the web and on mobile platforms is an important security mechanism de-
signed to enable human users to assert their identity to web applications, mobile devices or
mobile apps. Authentication goes hand in hand with authorisation which describes the spec-
ification of access privileges to resources. The specified access privileges are later on used
to grant or deny access to resources for authenticated users. This section will not give a de-
tailed overview of authentication and authorisation concepts (cf. the Authentication, Autho-
risation & Accountability (AAA) CyBOK Knowledge Area [4]) but will focus on authentication
mechanisms and technologies relevant for web and mobile platforms.

2.7.1 HTTP Authentication

Client Server
GET/ HTTP/L.1

>

HTTP/1.1 401 Unauthorized

Input WWW-Authenticated: Basic ...
Credentials '

GET/ HTTP/1.1

o . i Validate
———| Authorization Basic: Base64(Credent|als)_‘ Credentials
HTTP/1.1 200 OK
< HTTP/1.1 403 Forbidden -

Figure 5: Basic HTTP Authentication exchange.

In the HTTP context, authentication generally refers to the concept of verifying the identity
of a client to a server, e. g., by requiring the client to provide some pre-established secrets
such as username and password with a request. This section highlights two widely used
authentication methods on the web, Basic HTTP authentication, and the more frequently used
HTTP Form-based HTTP authentication.

Basic HTTP authentication [52] is a mechanism whose results are used to enforce access
control to resources. It does not rely on session identifiers or cookie data. Nor does the
Basic HTTP authentication scheme require the setup of dedicated login pages, as all ma-
jor browsers provide an integrated login form. A server can trigger this authentication op-
tion by sending a response header containing the “HTTP 401 Unauthorised” status
code and a “WWW-Authenticate: Basic” field. Credentials entered into this form by
the client are combined with a “” (“Username :Password”), Base64 encoded for transit
(“YXN1cm5hbWU6UGFzc3dvemQK”), and added as Authorisation header to the next request
(“Authorization: Basic VXN1lcm5hbWU6UGFzc3dvcemQK”). An example exchange be-
tween server and client is shown in Figure 5. The Basic authentication scheme is not secure,
as the credentials are transmitted after a simple Base64 encoding, which is trivial to reverse.
Hence, login credentials are transmitted in plain text across the network, which allows at-
tackers or network observers to easily steal the credentials. Therefore, Basic HTTP authenti-
cation should not be used without additional enhancements that ensure confidentiality and
integrity such as HTTPS.

Form-based HTTP authentication in which websites use a form to collect login credentials
is a widely prevalent form of authentication in modern web and mobile applications. For this

I KA Web & Mobile Security Page 16

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

scheme, an unauthenticated client trying to access restricted content is shown an HTML-
based web form that prompts for their credentials. The client then submits the entered cre-
dentials to the sever (e.g., in a POST request). The server validates the form data and au-
thenticates the client on successful validation. Similar to Basic authentication, Form-based
authentication exposes user credentials in plain text if not protected by HTTPS.

2.7.2 Mobile Device Authentication

Mobile devices deploy a variety of authentication mechanisms to unlock devices, grant users
access, and protect their data from illegitimate access. The most common mechanisms for
mobile device authentication are passwords, PINs, patterns and biometric features.

Users can use common alphanumeric passwords, including special characters. However,
since mobile device authentication is a frequent task [53], many users tend to unlock their
mobile device using numerical PINs. Android devices also support unlock patterns (see Fig-
ure 6). Instead of choosing a password or PIN, users can pick an unlock pattern from a 3x3
grid.

Modern mobile devices allow users to authenticate using biometric features, including finger-
print and facial recognition. These authentication features rely on hardware security primi-
tives, such as ARM’s TrustZone (cf. the Human Factors CyBOK Knowledge Area [20]).

12345678290

qwer tzuiop
asdf gh j kI

& yxcvbnm®

(a) PIN (b) Pattern (c) Password (d) Fingerprint In- (e) Facial Recogni-
dicator tion Indicator

Figure 6: Android Device Unlocking

Android Unlock Patterns Similar to passwords (see Section 2.9) device unlock patterns suffer
from multiple weaknesses. Uellenbeck et al. [54] conducted a study to investigate users’ choices
of 3x3 unlock patterns. They found empirical evidence that users tend to choose biased patterns,
e. g., users typically started in the upper left corner and selected three-point long straight lines.
Hence, similar to regular passwords (cf. the Human Factors CyBOK Knowledge Area [20]) the
entropy of unlock patterns is rather low. In addition to users choosing weak unlock patterns, the
mechanism is vulnerable to shoulder surfing attacks (see Section 3.3). As a countermeasure, De
Luca et al. [55] propose to use the back of a device to authenticate users.

I KA Web & Mobile Security Page 17

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

2.8 Cookies

Web servers can associate stateful information with particular clients by using HTTP cook-
ies [56]. Cookie information (e.g., IDs of items added to the shopping cart in an online shop)
is stored by the client. Cookies allow clients and servers to include their unique session
identifiers in each HTTP request-response, avoiding the need for repeated authentication.
Session cookies expire when the session is closed (e.g., by the client closing the browser)
but persistent cookies only expire after a specific time.

Cookie-based authentication allows clients to re-establish sessions every time they send re-
quests to the server with a valid cookie. Cookie-based session management is vulnerable
to the hijacking of session identifiers [57]. Hijackers who post valid session cookies can
connect to the attacked server with the privileges of the authenticated victim.

Cookies can also be used to track users across multiple sessions by providers. This be-
haviour is generally jeopardising user privacy (cf. the Adversarial Behaviours CyBOK Knowl-
edge Area [58] and the Privacy & Online Rights CyBOK Knowledge Area [49]).

2.9 Passwords and Alternatives

Passwords are the most widely deployed mechanism to let users authenticate to websites
and mobile applications and protect their sensitive information against illegitimate access
online. They are the dominant method for user authentication due to their low cost, deploy-
ability, convenience and good usability. However, the use of passwords for most online ac-
counts harms account security [18]. Since humans tend to struggle memorising many differ-
ent complicated passwords, they often choose weak passwords and re-use the same pass-
word for multiple accounts. Weak passwords can easily be guessed by attackers offline or
online. Re-used passwords amplify the severity of all password attacks. One compromised
online account results in all other accounts protected with the same password as vulnerable.
While password guidelines in the past frequently recommended the use of complex pass-
words, current guidelines state that requiring complex passwords actually weakens pass-
word security and advise against policies that include password complexity [59, 60]. These
aspects are further discussed in the Human Factors CyBOK Knowledge Area [20].

Online service providers deploy various countermeasures to address security issues with
weak passwords and password re-use:

I KA Web & Mobile Security Page 18

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

2.9.1 Password Policies

Password policies are rule sets to encourage users to choose stronger passwords. Some
password policies also address the memorability issue. To support stronger passwords,
most rules address password length and composition, blacklists and the validity period of a
password [61, 62].

2.9.2 Password Strength Meters

Password Strength Meters (PSMs) pursue the same goal as password policies and aim to en-
courage the choice of stronger passwords. PSMs typically provide visual feedback or assign
passwords scores to express password strength (see Figure 7) [63].

Very Weak
4 characters containing: v lowercase +' Uppercase
Time to crack your password: Review: Oh dear, using that password is like leaving your front
door wide open. Your password is very weak because itisa
0 Seconds dictionary word.

Figure 7: A password strength meter

However, addressing weak passwords and password re-use by deploying restrictive policies
or PSMs has only a limited effect on overall password security [64]. Hence, service providers
can use extensions to simple passwords to increase authentication security.

2.9.3 Password Managers

Password managers can help users generate, store and retrieve strong passwords. Strong
passwords are generated and stored using secure random number generators and secure
encryption. They come as locally installable applications, online services or local hardware
devices. While they can help users use more diverse and stronger passwords, their effect on
overall password security is limited due to usability issues [65]. For a more detailed discus-
sion please refer to the Human Factors CyBOK Knowledge Area [20].

2.9.4 Multi-Factor Authentication

Instead of requiring only one factor (e. g., a password), multi-factor authentication systems
require users to present multiple factors during the authentication process [66]. Website
passwords are often complemented with a second factor for two-factor authentication (2FA).
Most commonly, the second factor typically makes use of a mobile device. So in additionto a
password, users need to have their device at hand to receive a one-time token to authenticate
successfully. The European Payment Services Directive 2 (PSD2) requires 2FA for all online
payment services in web and mobile environments (cf. the Authentication, Authorisation &
Accountability (AAA) CyBOK Knowledge Area [4]).

I KA Web & Mobile Security Page 19

https://www.cybok.org

I The Cyber Security Body Of Knowledge CVBGK

2.9.5 WebAuthn

The WebAuthn (Web Authentication) [67] web standard is a core component of the FIDO2
project (cf. the Authentication, Authorisation & Accountability (AAA) CyBOK Knowledge Area [4])
and aims to provide a standardised interface for user authentication for web-based applica-
tions using public-key cryptography. WebAuthn is supported by most modern web-browsers
and mobile operating systems. It can be used in single-factor or multi-factor authentication
mode. In multi-factor authentication mode PINs, passcodes, swipe-patterns or biometrics
are supported.

2.9.6 OAuth

While not an authentication mechanism itself (cf. the Authentication, Authorisation & Ac-
countability (AAA) CyBOK Knowledge Area [4]), Open Authorisation (OAuth) [68] can be used
for privacy-friendly authentication and authorisation for users against third-party web appli-
cations. OAuth uses secure tokens instead of requiring users to provide login credentials
such as usernames and passwords. On behalf of their users, OAuth service providers provide
access tokens that authorise specific account information to be shared with third-party appli-
cations. More recent successors of the OAuth protocol including OAuth 2 [69] or OpenlID Con-
nect [70] support federations (cf. the Authentication, Authorisation & Accountability (AAA)
CyBOK Knowledge Area [4]). Large providers of online services such as Google or Facebook
can act as identity providers to authenticate users, thus helping users to reduce the number
of login credentials and accounts. While such protocols aim to provide improved security, the
correct and secure implementation of such complex protocols was shown to be error-prone
and might allow malicious users to run impersonation attacks [71].

2.10 Frequent Software Updates

Frequent software updates are a fundamental security measure and particularly crucial for
web and mobile platforms. This section discusses the different components in the web and
mobile ecosystems that require regular updates, the different update strategies, and their
pros and cons. Traditionally, browser and mobile device updates required their users to in-
stall updates manually whenever new versions were available. Users had to keep an eye on
software updates and were responsible for downloading and installing new releases. This
approach was error-prone and resulted in many outdated and insecure deployed software
components.

Most of the critical components on modern web and mobile platforms have short release
cycles. Web browsers, including Google Chrome and Mozilla Firefox, implement auto-update
features and frequently push new versions and security patches to their users.

Mobile platforms also provide automatic application updates for third-party apps. While this
approach generally results in quicker updates and the timely distribution of security patches,
automatic mobile application updates are only enabled by default for devices connected to
WiFi. Devices connected to a cellular network (e. g., 3G/4G) do not benefit from automatic
application updates by default. This update behaviour ensures most third-party application
updates are installed on mobile devices within a week [72]. Automatic third-party application
updates work well on mobile devices. Mobile operating system update behaviour heavily de-
pends on the platform. In particular, many non-Google Android devices suffer from outdated
and insecure operating system versions.

Overall, modern web and mobile platforms recognised the disadvantages of non-automatic

I KA Web & Mobile Security Page 20

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

software updates and now provide automatic or semi-automatic platform or application up-
dates in most cases.

Outdated Third Party Libraries While frequent software updates are crucial in general, up-
dates of third-party libraries is a particularly important security measure for software developers
who need to patch their own code and distribute updates, while also tracking vulnerabilities in
libraries they use and updating them for better security. Derr et al. [73] conducted a measurement
study of third-party library update frequencies in Android applications and found that a signifi-
cant number of developers use outdated libraries, exposing their users to security issues in the
affected third party libraries. Lauinger et al. [74] conducted a similar study for JavaScript libraries
in web applications and also found many websites that include outdated and vulnerable libraries.

3 CLIENT SIDE VULNERABILITIES AND MITIGATIONS

[75,76,77,78,79, 80, 81, 82, 83, 84, 85, 86, 87]

This section covers attacks and their countermeasures with a focus on the client. It dis-
cusses issues in both modern web browsers and mobile devices. The illustrated security
issues highlight aspects that have dominated security discussions in recent years. We focus
on attacks that exploit weaknesses in the interaction between users and web browsers and
mobile apps. We then discuss challenges resulting from the trend of storing more and more
information on the client instead of the server. Finally, we discuss physical attacks that do
not focus on exploiting software or human vulnerabilities, but exploit weak points in mobile
devices.

3.1 Phishing & Clickjacking

This section presents two prevalent issues that exploit user interface weaknesses of both
web and mobile clients. Phishing and clickjacking rely on issues humans have with properly
verifying URLs and the dynamic content of rendered HTML documents.

3.1.1 Phishing

Phishing attacks are fraudulent attacks that aim to steal sensitive information, including lo-
gin credentials and credit card numbers from victims [77]. Common types of phishing attacks
use email, websites or mobile devices to deceive victims. Attackers disguise themselves as
trustworthy parties and send fake emails, show fake websites or send fake SMS or instant
messages. Fake websites may look authentic. Attackers can use successfully stolen login
credentials or credit card numbers to impersonate victims and access important online ac-
counts. Successful phishing attacks may result in identity theft or loss of money.

Attackers commonly forge websites that appear legitimate to trick users into believing they
are interacting with the genuine website. To initiate a phishing attack, attackers plant manip-
ulated links on users via email, a website or any other electronic communication. The ma-
nipulated link leads to a forged website that appears to belong to the genuine organisation
behind the website in question. Attackers often spoof online social media, online banking
or electronic payment provider websites. They trick victims into following manipulated links
using misspelled URLs, subdomains or homograph attacks.

I KA Web & Mobile Security Page 21

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

Example: Phishing URL In the following example URL:
https://paymentorganization.secure.server.com,

it appears that the URL points to the secure.server section of the paymentorganization website. How-

ever, in fact the link leads to the paymentorganization.secure section of the server.com website.

To make forged websites look even more authentic, some phishers alter a browser’s address
bar by replacing the original address bar with a picture of the legitimate URL or by replacing
the original address bar with a new one. Address bar manipulation attacks require the use of
JavaScript commands. Additionally, phishers leverage Internationalised Domain Name (IDN)
homograph attacks [88]. Such attacks exploit that users cannot easily distinguish different
character encodings. For example, the letters "I” and "1” (capital i) are hard to distinguish, and
by replacing the Latin characters "a” with the cyrilic character "a” in the https://paypal.com url,
users can deceptively be redirected to a phished PayPal website. [89]. Attacks that involve
manipulated URLs and address bars are even harder to detect in mobile browsers since the
address bar is not visible during regular browsing. Website phishing is one of the most fre-
quent attacks. Most human users find it hard to to spot phishing URLs and websites [75].

Therefore, common countermeasures are anti-phishing training and public awareness cam-
paigns [76] that try to sensitise users and teach them how to spot phishing URLs. Modern
browsers deploy technical security measures, including blacklists and visual indicators that
highlight the top-level domain of a URL, e.g. Google Chrome shows URLs using an encoding
that exposes deceptive characters in IDN attacks .

Drive-by-download Attacks Drive-by-download attacks happen when users visit a website,
clickonalink or on an attachment in a phishing email or on a malicious popup window. While being
a general problem in the web, drive-by-downloads play a particular role in phishing attacks. Instead
of visiting a benign website, drive-by-download attacks download and install malware (cf. the
Malware & Attack Technology CyBOK Knowledge Area [9]) on a user’'s computer. Attackers need
to fingerprint victim clients and exploit vulnerable software components on the client’'s computer
to plant the malware. Detecting such attacks is an active research area and includes approaches
such as anomaly or signature based malware detection [90].

3.1.2 Clickjacking

In a clickjacking attack, attackers manipulate the visual appearance of a website to trick
users into clicking on a fake link, button, or image. Clickjacking is also known as a user
interface redress attack and belongs to the class of confused deputy attacks [78]. Attackers
fool their victims using transparent or opaque layers over original websites. While victims
believe they have clicked on the overlay element, the original website element is clicked on.
Attackers can thus make their victims trigger arbitrary actions on the original website. The
attack website uses an iFrame to load the target website and can make use of the absolute
positioning features of iFrames for correct visual alignment. Thus, it is hard for victims to
detect the attack elements over the original website. Clickjacking attacks are particularly
dangerous when victims have already logged in to an online account and visit their account
settings website. In those cases, an attacker can trick the victim into performing actions on
a trusted site when the victim is already logged in. One of the most prominent clickjacking
attacks hit the Adobe Flash plugin settings page [79]. Attackers used invisible iFrames to

’cf. https://www.chromium.org/developers/design-documents/idn-in-google-chrome

I KA Web & Mobile Security Page 22

https://www.cybok.org
https://www.chromium.org/developers/design-documents/idn-in-google-chrome

I The Cyber Security Body Of Knowledge cyBGK

trick their victims into changing the plugin’s security settings and permitting the attackers to
access the microphone and camera of their victims’ machines.

Clickjacking attacks can be used to launch other attacks against websites and their users,
including Cross-Site Request Forgery and Cross-Site Scripting attacks (see Section 4.1) [78].

A clickjacking attack is not a programming mistake but a conceptual problem with JavaScript.
Hence, detection and prevention are not trivial. Detecting and preventing clickjacking attacks
can be done both server- and client-side. Web browser users can disable JavaScript and
iFrames to prevent clickjacking attacks. However, since this would break many legitimate
websites, different browser plugins (e. g., NoScript [80]) allow the controlled execution of
JavaScript scripts on behalf of the user. In order to contain the impact of clickjacking attacks,
users should log out of online accounts when leaving a website, although this could be im-
practical. In order to prevent clickjacking attacks on the server-side, website developers need
to make sure that a website is not frame-able, i. e. a website does not load if it is inside an
iFrame. Websites can include JavaScript code to detect whether a website has been put into
an iFrame and break out of the iFrame. This defence technique is called FrameBusting [81].
However, since users might have disabled JavaScript, this method is not reliable. The rec-
ommended server-side defence mechanism is to set a proper HTTP response header. The
X-FRAME-OPTIONS header can be set to DENY, which will prevent a website being loaded
inside an iFrame.

Clickjacking attacks affect both desktop and mobile web browsers.

Phishing and Clickjacking on Mobile Devices Phishing and Clickjacking are not limited to
browsers and the web. Mobile application users are susceptible to both attacks. Aonzo et al. [91]
find that it is possible to trick users into an end-to-end phishing attack that allows attackers to
gain full Ul control by abusing Android’s Instant App feature and password managers to steal login
credentials. Fratantonio et al. [92] describe the Cloak & Dagger attack that allows a malicious
application with only two permissions (cf. Section 2.5) to take control over the entire Ul loop. The
attack allows for advanced clickjacking, keylogging, stealthy fishing and silent phone unlocking.

3.2 Client Side Storage

Client-side storage refers to areas that a browser or operating system provides to websites
or mobile applications to read and write information. Storage is local to the client and does
not require server-side resources or an active Internet connection. At the same time, mali-
cious users may manipulate stored information. Hence, client-side storage areas need to be
protected from malicious access. This section describes common client-side storage areas
and their protection mechanisms.

I KA Web & Mobile Security Page 23

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

3.2.1 Client Side Storage in the Browser

Historically, client-side browser storage was only used to store cookie information (see Sec-
tion 2.8). However, due to their simple design and limited capacity, cookies cannot be used to
store large or complex amounts of information. With the rise of HTML5, more powerful and
feature-rich alternatives for client-side storage in the browser exist. These include WebStor-
age [82], which is similar to cookies and stores key-value pairs, and IndexedDB [83], which
serves as a database in the vein of noSQL databases and can be used to store documents,
other files and binary blobs.

As mentioned, the primary security issue with client-side storage mechanisms is that ma-
licious users can manipulate them. To guarantee integrity for sensitive information (e.g.,
session information), developers are advised to cryptographically sign the data stored on
the client and verify it upon retrieval.

In addition to information integrity, a second important aspect of WebStorage and IndexedDB
storage is that stored information is not automatically cleared after users leave a website. To
store information in a session-like fashion, web application developers are advised to rely on
the sessionStorage object of the WebStorage API [85].

3.2.2 Client Side Storage in Mobile Applications

In mobile applications, handling client-side storage security also depends on the type of infor-
mation and storage mechanism, e. g., private storage of an application or public storage such
as an SD card. Most importantly, data should be digitally signed and verified (cf. the Cryp-
tography CyBOK Knowledge Area [93]) for both browser and mobile client storage purposes.
It is recommended that developers sign and encrypt sensitive information and apply proper
user input sanitisation. This is particularly relevant for shared storage such as SD-cards that
do not use secure access control mechanisms. Instead, proper access administration mech-
anisms are provided for storage areas that are private to an application.

Sensitive Information Leaks in Android Applications Enck et al. [94] investigated the se-
curity of 1,100 popular Android applications. Amongst other things, they found that a significant
number of apps leaked sensitive user information to publicly readable storage locations such as
log files and the SD card. Reardon et al. [95] discovered that some sensitive information leaks are
made intentionally to pass sensitive information to another, collaborating and malicious app.

I KA Web & Mobile Security Page 24

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

3.3 Physical Attacks

Instead of attacking web or mobile applications’ code, physical attacks aim to exploit bugs
and weak points that result from using a device. We focus on two representative examples
below.

3.3.1 Smudge attacks

In a smudge attack, an attacker tries to learn passwords, PINs or unlock patterns entered on a
touchscreen device. The main problem with entering sensitive unlock information through a
touchscreen is the oily smudges that users’ fingers leave behind when unlocking a device. Us-
ing inexpensive cameras and image processing software, an attacker can recover the grease
trails and infer unlock patterns, passwords, and PINs [86]. To perform a smudge attack, an
attacker needs a clear view of the target display.

3.3.2 Shoulder Surfing

Shoulder surfing is a physical attack where an attacker tries to obtain sensitive information
such as passwords, PINs, unlock patterns, or credit card numbers [87]. For a shoulder surf-
ing attack, an attacker needs a clear view of the target display. The attacker can mount a
shoulder surfing attack either directly by looking over the victim's shoulder or from a longer
range by using dedicated tools such as cameras or telescopes. Shoulder surfing attacks are
particularly dangerous for mobile device users when authenticating to the device or online
services in public spaces such as trains, railways, and airports.

4 SERVER SIDE VULNERABILITIES AND MITIGATIONS

[96, 97,98, 99,100, 101, 102, 103, 104, 105]

This section discusses server-side security. It provides details for common aspects of server
security, including well-known vulnerabilities and mitigations. The section discusses root
causes, illustrates examples, and explains mitigations. The aspects discussed below are
central for the web and mobile environments and dominated many of the security discus-
sions in this area in the past.

4.1 Injection Vulnerabilities

Injection attacks occur whenever applications suffer from insufficient user input validation
so that attackers can insert code into the control flow of the application (cf. the Software
Security CyBOK Knowledge Area [6]). Prevalent injection vulnerabilities for web and mobile
applications are SQL and Shell injections [22]. Due to inadequate sanitisation of user input,
requests to a database or shell commands can be manipulated by an attacker. Such attacks
can leak or modify information stored in the database or issue commands on a system in
ways developers or operators have not intended. The main goal of injection attacks is to
circumvent authentication and expose sensitive information such as login credentials, per-
sonally identifiable information, or valuable intellectual property of enterprises.

Injection vulnerabilities can be addressed by adequately sanitising attacker-controlled infor-
mation and deploying proper access control policies. The goal of input sanitisation is to filter

I KA Web & Mobile Security Page 25

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

invalid and dangerous input. Additionally, strict access control policies can be implemented
to prevent injected code from accessing or manipulating information [96].

4.1.1 SQL-Injection

SQL-injection attacks refer to code injections into database queries issued to relational databases
using the Structured Query Language (SQL). Many web and mobile applications allow users

to enter information through forms or URL parameters. SQL injection occurs if such user
input is not filtered correctly for escape characters and then used to build SQL statements.
Enabling attackers to modify SQL statements can result in malicious access or manipulation

of information stored in the database.

Example: SQL Injection attack The statement below illustrates the vulnerability.
vuln_statement = " ’'SELECT_.*_FROM.creditcards WHERE_number_=_"" +

n rn

user_input + ";

The intention of the statement is to retrieve credit card information for a given user input. An
example for an expected input 123456789.

However, the statement above allows malicious values for the user_input variable. An attacker
might provide © OR '1’="1 as input which would render the following SQL statement:

vuln_statement = " 'SELECT.*_FROM.creditcards .WHERE_number_=.""_ 1
OR.'1'="1";"
Instead of retrieving detailed credit card information only for one specific credit card number, the
statement retrieves information for all credit cards stored in the database table. A potential web
application with the above SQL injection vulnerability could leak sensitive credit card information
for all users of the application.

The consequences of the above SQL injection vulnerability might be directly visible to the
attacker if all credit card details are listed on a results page. However, the impact of an SQL
injection can also be hidden and not visible to the attacker.

blind SQL injections [97], do not display the results of the vulnerability directly to the attacker
(e.g., because results are not listed on a website). However, the impact of an attack
might still be visible through observing information as part of a true-false response of
the database. Attackers might be able to determine the true-false response based on
the web application response and the way the web site is displayed.

second order In contrastto the previous types of SQL injection attacks, second order attacks
occur whenever user submitted input is stored in the database for later use. Other
parts of the application then rely on the stored user input without escaping or filtering
it properly.

One way to mitigate SQL injection attacks is with the use of prepared statements [98, 99].
Instead of embedding user input into raw SQL statements (see above), prepared statements
use placeholder & variables to process user input. Placeholder variables are limited to store
values of a given type and prohibit the input of arbitrary SQL code fragments. SQL injections
attacks would result in invalid parameter values in most cases and not work as intended
by an attacker. Also, prepared statements are supported by many web application devel-
opment frameworks at the coding level using Object Relational Mapping (ORM) interfaces.

8Also called bind variables.

I KA Web & Mobile Security Page 26

https://www.cybok.org

I The Cyber Security Body Of Knowledge CVBGK

ORMs do not require developers to write SQL queries themselves but generate database
statements from code. While prepared statements are an effective mitigation mechanism, a
further straightforward way is to escape characters in user input that have a special meaning
in SQL statements. However, this approach is error-prone, and many applications that apply
some form of SQL escaping are still vulnerable to SQL injection attacks. The reasons for the
mistakes are often incomplete lists of characters that require escaping. When escaping is
used, developers should rely on functions provided by web application development frame-
works (e.g. themysqli_real _escape_string() functionin PHP) instead of implementing
their own escaping functionality.

4.1.2 Command Injections

This type of injection attack affects vulnerable applications that can be exploited to execute
arbitrary commands on the host operating system of a web application [106]. Similar to SQL
injection attacks, command injections are mostly possible due to insufficient user input vali-
dation. Vulnerable commands usually run with the same privileges as the host application.

An example of a command injection attack is a web application that converts user-provided
images using a vulnerable image command line program. Providing malicious input (e.g.,
a filename or a specially crafted support graphic that includes malicious code) might allow
attackers to exploit insufficient input validation and extend the original command or run ad-
ditional system commands.

A mitigation for command injection attacks is to construct the command strings, including all
parameters in a safe way that does not allow attackers to exploit malicious string input. In ad-
dition to proper input validation due to escaping, following the principle of least-privilege and
restricting the privileges of system commands and the calling application is recommended.
The number of callable system commands should be limited by using string literals instead
of raw user-supplied strings. In order to further increase security, regular code reviews are
recommended, and vulnerability databases (e. g., the CVE [100] database) should be mon-
itored for new vulnerabilities. Finally, if possible, executing system commands should be
avoided altogether. Instead, the use of API calls in the respective development framework is
recommended.

4.1.3 User Uploaded Files

Files provided by users such as images or PDFs have to be handled with care. Malicious files
trigger unwanted command execution on the host operating system of the server, overload
the host system, trigger client-side attacks, or deface vulnerable applications [22].

Example: Online Social Network An example application could be an online social network
that allows users to upload their avatar picture. Without proper mitigation techniques in place, the
web application itself might be vulnerable. A malicious user could upload a . php file. Accessing
that file might prompt the server to process it as an executable PHP file. This vulnerability would
allow attackers to both execute code on the server with the permissions of the PHP process and
also control the content served to other users of the application.

To prevent attacks through user-uploaded files, both meta-data including file names and the
actual content of user-uploaded files need to be restricted and filtered, e.g. looking for mal-
ware in uploaded files. Filenames and paths should be constructed using string literals in-
stead of raw strings and proper mime-types for HTTP responses used whenever possible.

I KA Web & Mobile Security Page 27

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

Files that are only available for download and should not be displayed inline in the browser,
can be tagged with a Content-Disposition HTTP response header [101]. Another suc-
cessful mitigation for the above issue is to serve files from a different domain. If the domain
is not a subdomain of the original domain, the SOP 2.4.2 prevents cookies and other critical
information from being accessible to the malicious file. Additionally, JavaScript and HTML
files are protected by the SOP as well.

4.1.4 Local File Inclusion

This type of vulnerability is a particular form of the above command injection or user-uploaded
files vulnerabilities [22]. For example, attackers can exploit a command injection, use a mal-
formed path in a database or a manipulated filename. The file path resulting from one of
these vulnerabilities can be crafted to point to a local file on the server, e.g., a .htaccess
or the /etc/shadow file. A vulnerable web application might then access the maliciously
crafted file path and instead of loading a benign file, read and send the content of the attacker-
chosen file and e. g. leak login credentials in the /etc/shadow file.

In addition to sanitisation of file path parameters such as leading / and .. in user input,
the application of the least privilege principle is recommended. A web application should be
executed with minimal privileges and so that it cannot access sensitive files.

4.1.5 Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) [102] attacks are injection vulnerabilities that allow attackers to
inject malicious scripts (e. g., JavaScript) into benign websites. They can occur whenever
malicious website users are able to submit client scripts to web applications that redistribute
the malicious code to other end-users. Common examples of websites that are vulnerable to
XSS attacks are message forums that receive user content and show it to other users. The
primary root cause for XSS vulnerabilities is web applications that do not deploy effective
input validation mechanisms. Untrusted and non-validated user-provided data might contain
client-side scripts. Without proper user input validation, a malicious JavaScript previously
provided by one user, might be distributed to other users and manipulate the website they
are visiting or steal sensitive information. In an XSS attack, the client browser cannot detect
the malicious code, since it is sent from the original remote host, i.e. same-origin-policy
based security measures are ineffective. We distinguish two types of XSS attacks:

stored In a stored XSS attack the malicious script is permanently stored on the target server
(e.g. in a database) and distributed to the victims whenever they request the stored
script for example as part of a comment in a message forum. Stored XSS attacks are
also called permanent or Type-l XSS.

reflected In a reflected XSS attack, the malicious script is not permanently stored on the
target server, but reflected by the server to the victims. Malicious scripts in reflected
attacks are distributed through different channels. A common way of delivering a ma-
licious script is to craft a link to the target website. The link contains the script and
clicking the link executes the malicious script in the website’s script execution context.
Reflected XSS attacks are also called non-permanent or Type-Il XSS.

Preventing both types of XSS attacks requires rigorous user input validation and escaping
by the server. The most effective means of input validation is a whitelist approach, which
denies any input that is not explicitly allowed. For proper and secure entity encoding, the use

I KA Web & Mobile Security Page 28

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

of a security encoding library is recommended, since writing encoders is very difficult and
code review in combination with the use of static code analysis tools is also valuable.

Since eliminating XSS vulnerabilities entirely due to user input sanitization is hard, different
approaches are discussed in the literature. A promising approach is the randomisation of
HTML tags and attributes. Web applications randomise their order so clients can distinguish
between benign and trusted content and potentially untrusted malicious content. As long as
an attacker does not know the randomisation mapping, clients can successfully distinguish
trusted from untrusted scripts [107].

4.1.6 Cross-Site Request Forgery

Cross Site Request Forgery (CSRF) [103] attacks mislead victims into submitting malicious
HTTP requests to remote servers. The malicious request is executed on behalf of the user
and inherits their identity and permissions. CSRF attacks are so dangerous because most
requests to remote servers include credentials and session information associated with a
user’s identity, including session cookies. Authenticated users are particularly attractive vic-
tims for attackers since it can be hard for remote servers to distinguish between benign and
malicious requests as long as they are submitted from the victim’'s machine. CSRF attacks do
not easily allow attackers to access the server response for the malicious request. Therefore,
the main goal of a CSRF attack is to trick victims into submitting state-changing requests to
remote servers. Attractive targets are requests that change the victim's credentials or pur-
chase something.

Example: Online Banking In the following online banking scenario Alice wishes to trans-
fer 50 EUR to Bob using an online banking website that is vulnerable to a CSRF attack. A be-
nign request for an authenticated user Alice for the mentioned scenario could be similar to GET
https://myonlinebank.net/transaction?to=bob&value=>50. Inafirst step, an attacker
can craft a malicious URL such as https://myonlinebank.et/transaction?to=attacker&value=50 and re-
place the intended recipient of the transaction with the attacker’'s account. The second step for
successful CSRF attack requires the attacker to trick Alice into sending the malicious request with
her web browser, e. g. by sending a SPAM email containing the request which Alice subsequently
clicks on. However, CSRF attacks are not limited to HTTP GET requests but also affect POST
requests, e. g. by crafting malicious j form¢ tags.

Many misconceptions lead to ineffective countermeasures. CSRF attacks cannot be pre-
vented by using secret cookies because all cookies are sent from a victim to the remote
server. Also, the use of HTTPS is ineffective as long as the malicious request is sent from
the victim, because the protocol does not matter and the use of POST requests for sensitive
information is insufficient since attackers can craft malicious HTML forms with hidden fields.
To effectively prevent CSRF attacks, it is recommended to include randomised tokens in sen-
sitive requests, e. g., by adding them to the request headers. The tokens must be unique per
session and generated with a secure random number generator to prevent attackers from
predicting them. Servers must not accept requests from authenticated clients that do not
include a valid token.

I KA Web & Mobile Security Page 29

https://www.cybok.org

I The Cyber Security Body Of Knowledge CVBGK

4.2 Server Side Misconfigurations & Vulnerable Components

A web application stack consists of multiple components, including web servers, web ap-
plication frameworks, database servers, firewall systems, and load balancers and proxies.
Overall, web application security highly depends on the security of each of the involved com-
ponents.

A single insecure component is often enough to allow an attacker access to the web applica-
tion and further escalate their attack from the inside. This is why deploying and maintaining
a secure web application requires more than focusing on the code of the app itself. Every
component of the web application stack needs to be configured securely and kept up to date
(see Section 2.10).

The Heartbleed Vulnerability A famous example of a critical vulnerability that affected many
web application stacks in 2014 is Heartbleed [104]. Heartbleed was a vulnerability in the widely
used OpenSSL library and caused web servers to leak information stored in the webservers’ mem-
ory. This included TLS certificate information such as private keys, connection encryption details,
and any data the user and server communicated, including passwords, usernames, and credit
card information [105]. To fix affected systems, administrators had to update their OpenSSL li-
braries as quickly as possible and ideally also revoke certificates and prompt users to change
their passwords.

As previously discussed, the principle of least privilege can reduce a web application’s attack
surface tremendously. Proper firewall and load balancer configurations serve as examples:

4.2.1 Firewall

To protect a webserver, a firewall should be configured to only allow access from outside
where access is needed. Access should be limited to ports like 80 and 443 for HTTP requests
via the Internet and restricting system configuration ports for SSH and alike to the internal
network (cf. the Network Security CyBOK Knowledge Area [5]).

4.2.2 Load Balancers

A load balancer is a widely deployed component in many web applications. Load balancers
control HTTP traffic between servers and clients and provide additional access control for
web application resources. They can be used to direct requests and responses to different
web servers or ports, balance traffic load between multiple web servers and protect areas
of a website with additional access control mechanisms. The most common approach for
controlling access is the use of .htaccess files. They can restrict access to content on the
original web server and instruct load balancers to require additional authentication.

Load balancers can also serve for rate limiting purposes. They can limit request size, allowed
request methods and paths or define timeouts. The main use of rate-limiting is to reduce the
potentially negative impact of denial of service attacks on a web server and prevent users
from spamming systems, as well as restrict and prevent unexpected behavior.

Additionally, load balancers can be used to provide secure TLS connections for web appli-
cations. When managing TLS, load balancers serve as a network connection endpoint for
the TLS encryption and either establish new TLS connections to the application service or
connect to the web application server using plain HTTP. If the web application server is not
hosted on the same machine, using plain network connections might leak information to the

I KA Web & Mobile Security Page 30

https://www.cybok.org

I The Cyber Security Body Of Knowledge cyBGK

internal network. However, if the web application server does not provide HTTPS itself, using
a load balancer as a TLS endpoint increases security.

HTTPS Misconfigurations One cornerstone of web and mobile security is the correct and se-
cure configuration of HTTPS on web servers. However, Holz et al. [108] found that a significant
number of popular websites deploy invalid certificates with incomplete certificate chains, issued
for the wrong hostname or expired lifetime. In a similar study Fahl et al. [109] confirmed these
findings and also asked website operators for the reasons for deploying invalid certificates. Most
operators were not aware of using an invalid certificate or used one on purpose because they did
not trust the web PKI. Krombholz et al. [110, 111] conducted a set of studies and found that opera-
tors have difficulties with correctly configuring HTTPS, or they harbour misconceptions about the
security features of HTTPS.

4.2.3 Databases

Similar to load balancers and firewalls, many web applications include databases to store
user information permanently. Often, databases are operated as an additional service that is
hosted on another server. The application server interacts with the database through libraries
and APlIs. It is important to prevent injection vulnerabilities on the server. Additionally, errors
in the implementation of database libraries or coarse permissions required by the application
can lead to vulnerabilities.

To reduce the attack vector, most database systems provide user management, to limit user
privileges to create, read, delete or modify entries in tables and across databases. In this way
one database per application can be created and particular users with read-only permissions
can be used by the application server.

An important aspect of increasing database security is the decision on how to store data.
Encrypting data before storage in the database can help. However, especially for passwords
or other information that only needs to be compared for equality, hashing before storage can
tremendously increase security. In the case of a data leak, the sensitive information remains
unreadable. To store passwords securely, web and mobile app developers are recommended
to use a secure hash function such as Argon2 [112] or PBKDF2 [113] in combination with a
cryptographically strong credential-specific salt. A salt is a cryptographically strong fixed-
length random value and needs to be newly generated for for each set of credentials [114].

Password Leaks Developers tend to store plain passwords, credit card information or other
sensitive information in databases instead of encrypting or hashing them (cf. the Human Factors
CyBOK Knowledge Area [20]). Hence, many leaks of password databases or credit card infor-
mation put users at risk [115]. Modern browsers and password managers help users to avoid
passwords that were part of a previous data breach [116].

I KA Web & Mobile Security Page 31

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

5 CONCLUSION

As we have shown, web and mobile security is a diverse and broad topic covering many ar-
eas. This Knowledge Area emphasised an intersectional approach by exploring security con-
cepts and mechanisms that can be found in both the web and the mobile worlds. It therefore
builds upon and extends the insights from other Knowledge Areas, in particular the Software
Security CyBOK Knowledge Area [6], Network Security CyBOK Knowledge Area [5], Human
Factors CyBOK Knowledge Area [20], Operating Systems & Virtualisation CyBOK Knowledge
Area [3], Privacy & Online Rights CyBOK Knowledge Area [49], Authentication, Authorisation
& Accountability (AAA) CyBOK Knowledge Area [4] and the Physical Layer and Telecommu-
nications CyBOK Knowledge Area [7].

We showed that due to the ubiquitous availability and use of web and mobile applications
and devices, paying attention to their security issues is crucial for overall information security.
We discussed web technologies that build the core of both web and mobile security, outlined
their characteristics and illustrated how they are different from other ecosystems.

Later on, we split the discussion into client- and server-side aspects. In particular, this Knowl-
edge Area has focused on attacks and defences that were prevalent in web and mobile clients
and servers and that dominated discussions in recent years.

CROSS-REFERENCE OF TOPICS VS REFERENCE MATERIAL

Section References
2 Fundamental Concepts and Approaches

2.1 Appification [11, 21]

2.2 Webification [22,14, 31]
2.3 Application Stores [32, 33, 36]
2.4 Sandboxing [37, 38, 39, 40]
2.5 Permission Dialog Based Access Control [15, 44]
2.6 Web PKI and HTTPS [16, 17, 45, 51]
2.7 Authentication [52, 54]
2.8 Cookies [56]

2.9 Passwords and Alternatives [61, 63, 65]
2.10 Frequent Software Updates [73, 74]

3 Client Side Vulnerabilities and Mitigations

3.1 Phishing & Clickjacking [77,75, 76, 81]
3.2 Client Side Storage [82]

3.3 Physical Attacks [86, 87]

4 Server Side Vulnerabilities and Mitigations

4.1 Injection Vulnerabilities [96, 97,98, 102, 103]

4.2 Server Side Misconfigurations & Vulnerable Components [108, 110, 111, 116]

FURTHER READING

The following resources provide a deeper insight into web and mobile security as well as
guidance and recommendations for preventing and handling the vulnerabilities presented
and discussed above.

I KA Web & Mobile Security Page 32

https://www.cybok.org

I The Cyber Security Body Of Knowledge CyBGK

The OWASP Project & Wiki

The Open Web Application Security Project (OWASP) is an international not-for-profit charita-
ble organisation providing practical information about application and web security. It funds
many projects including surveys like the OWASP TOP 10, books, CTFs and a wiki contain-
ing in-depth descriptions, recommendations and checklists for vulnerabilities and security
measurements. The core wiki can be found at https://www.owasp.org/.

Mozilla Developer Network

An all-encompassing resource provided by Mozilla covering open web standards, including
security advice and cross platform behaviour for Javascript APIs, as well as a HTML and CSS
specifications. It can be found at https://developer.mozilla.org

Android Developers

The official documentation for the Android development ecosystem, including security ad-
vice for client side storage, webviews, permissions, Android databases and network connec-
tions. It also includes information for outdated operating system versions and the Google
Play Update process. Available at https://developer.android.com

REFERENCES

[1] Google, “Manage flash in your users’ Chrome browsers,” 2019. [Online]. Available:
https://support.google.com/chrome/a/answer/7084871

[2] OWASP, “OWASP cheat sheet series,” 2019. [Online]. Available: https://www.owasp.
org/index.php/OWASP _Cheat_Sheet_Series

[3] H.Bos, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Operating
Systems & Virtualisation, version 1.0. [Online]. Available: https://www.cybok.org/

[4] D. Gollmann, The Cyber Security Body of Knowledge. University of Bristol, 2019,
ch. Authentication, Authorisation & Accountability, version 1.0. [Online]. Available:
https://www.cybok.org/

[5] S. Jha, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Network
Security, version 1.0. [Online]. Available: https://www.cybok.org/

[6] F. Piessens, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.
Software Security, version 1.0. [Online]. Available: https://www.cybok.org/

[7] S. éapkun, The Cyber Security Body of Knowledge. University of Bristol, 2019,
ch. Physical Layer & Telecommunications, version 1.0. [Online]. Available: https:
//www.cybok.org/

[8] I. Verbauwhede, The Cyber Security Body of Knowledge. University of Bristol, 2019,
ch. Hardware Security, version 1.0. [Online]. Available: https://www.cybok.org/

[9] W. Lee, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch. Malware
& Attack Technology, version 1.0. [Online]. Available: https://www.cybok.org/

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
“Hypertext Transfer Protocol — HTTP/1.1,” Internet Requests for Comments, Network
Working Group, RFC 2616, June 1999. [Online]. Available: https://www.ietf.org/rfc/
rfc2616.txt

[11] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith, “SoK: Lessons learned

I KA Web & Mobile Security Page 33

https://www.cybok.org
https://www.owasp.org/
https://developer.mozilla.org
https://developer.android.com
https://support.google.com/chrome/a/answer/7084871
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.cybok.org/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt

I The Cyber Security Body Of Knowledge CyBGK

from Android security research for appified software platforms,” in 2076 IEEE Sympo-
sium on Security and Privacy (SP), May 2016, pp. 433—-451.

[12] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),
Internet Requests for Comments, Network Working Group, RFC 1738, December 1994,
[Online]. Available: https://www.ietf.org/rfc/rfc1738.txt

[13] W3C, “HTML 5.2, Dec 2017. [Online]. Available: https://www.w3.org/TR/htm|52/

[14] “Ecmascript language specification,” August 2019. [Online]. Available: https://tc39.es/
ecma262/

[15] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions demystified,’
in Proceedings of the 18th ACM Conference on Computer and Communications
Security, ser. CCS'11. New York, NY, USA: ACM, 2011, pp. 627-638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[16] E. Rescorla, “The transport layer security (tls) protocol version 1.3, Internet Requests
for Comments, RFC Editor, RFC 8446, August 2018.

[17] ——, “HTTP over TLS,” Internet Requests for Comments, RFC Editor, RFC 2818, May
2000. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2818.txt

[18] J. Bonneau, C. Herley, P. C. v. Qorschot, and F. Stajano, “The quest to
replace passwords: A framework for comparative evaluation of web authen-
tication schemes,” in IEEE Symposium on Security and Privacy. |EEE, May
2012. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication

[19] E. Enge, “Mobile VS. Desktop Usage in 2019, 2019. [Online]. Available: https:
//www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study

[20] M. A. Sasse, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.
Human Factors, version 1.0. [Online]. Available: https://www.cybok.org/

[21] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G. Pellegrino, S. Bugiel,
and M. Backes, “The rise of the citizen developer: Assessing the security impact
of online app generators,” in 2078 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA, May 2018, pp. 634-647.
[Online]. Available: https://doi.org/10.1109/SP.2018.00005

[22] M. Zalewski, The Tangled Web: A Guide to Securing Modern Web Applications, 1st ed.
San Francisco, CA, USA: No Starch Press, 2011.

[23] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol Version 2
(HTTP/2),” Internet Requests for Comments, Internet Engineering Task Force (IETF),
RFC 7540, May 2015. [Online]. Available: https://tools.ietf.org/html/rfc7540

[24] I. Fette and A. Melnikov, “The websocket protocol,” Internet Requests for Comments,
RFC Editor, RFC 6455, December 2011. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc6455.1xt

[25] E. Leung, “Learn to style HTML using CSS,” Aug 2019. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Learn/CSS

[26] Node.js Foundation, “Node.js,” 2019. [Online]. Available: https://nodejs.org/en/

[27] “Webassembly 1.0,” 2019. [Online]. Available: https://webassembly.org/

[28] Google, “Android Developer Documentation - WebView,” 2019. [Online]. Available:
https://developer.android.com/reference/android/webkit/WebView

[29] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A Large-Scale Study of Mo-
bile Web App Security,” in Proceedings of the Mobile Security Technologies Workshop
(MoST), May 2015.

[30] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and fixing origin-based access con-
trol in hybrid web/mobile application frameworks,” NDSS symposium, vol. 2014, pp. 1-

I KA Web & Mobile Security Page 34

https://www.cybok.org
https://www.ietf.org/rfc/rfc1738.txt
https://www.w3.org/TR/html52/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
http://doi.acm.org/10.1145/2046707.2046779
http://www.rfc-editor.org/rfc/rfc2818.txt
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.microsoft.com/en-us/research/publication/the-quest-to-replace-passwords-a-framework-for-comparative-evaluation-of-web-authentication-schemes/
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.cybok.org/
https://doi.org/10.1109/SP.2018.00005
https://tools.ietf.org/html/rfc7540
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS
https://nodejs.org/en/
https://webassembly.org/
https://developer.android.com/reference/android/webkit/WebView

I The Cyber Security Body Of Knowledge CyBGK

15, 2014.

[31] ——, “Rethinking security of web-based system applications,” in Proceedings of the 24th
International Conference on World Wide Web, ser. WWW '15. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences Steering Committee,
2015, pp. 366—376. [Online]. Available: https://doi.org/10.1145/2736277.2741663

[32] H. Lockheimer, “Android and security,” 2012. [Online]. Available: http://googlemobile.
blogspot.com/2012/02/android-and-security.html

[33] Apple Inc., “App store review guidelines,” 2019. [Online]. Available: https://developer.
apple.com/app-store/review/guidelines/

[34] S. Fahl, M. Harbach, T. Muders, L. Baumgartner, B. Freisleben, and M. Smith,
“Why Eve and Mallory love Android: An analysis of Android SSL (in)security,” in
Proceedings of the 2072 ACM Conference on Computer and Communications Security,
ser. CCS "12. New York, NY, USA: ACM, 2012, pp. 50-61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[35] Android Developers, “Sign your app — Android Developers,” 2019. [Online]. Available:
https://developer.android.com/studio/publish/app-signing

[36] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large effect: Measuring
the impact of user reviews on Android app security & privacy,” in Proceedings of the
IEEE Symposium on Security & Privacy, May 2019. IEEE, May 2019. [Online]. Available:
https://publications.cispa.saarland/2815/

[37] A. Barth, C. Reis, C. Jackson, and Google Chrome Team, “The security architecture
of the chromium browser,” Jan. 2008. [Online]. Available: http://seclab.stanford.edu/
websec/chromium/chromium-security-architecture.pdf

[38] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Venter, “The
multi-principal OS construction of the Gazelle web browser,” in Proceedings of the
18th Conference on USENIX Security Symposium, ser. SSYM'09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 417-432. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1855768.1855794

[39] Google, “Chrome sandbox,” 2019. [Online]. Available: https://chromium.googlesource.
com/chromium/src/+/master/docs/design/sandbox.md

[40] ——, “Android application sandbox,” 2019. [Online]. Available: https://source.android.
com/security/app-sandbox

[41] A. Barth, “The web origin concept,” Internet Requests for Comments, RFC Editor, RFC
6454, December 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6454.txt

[42] T. C. Projects, “Site Isolation Design Document.” [Online]. Available: https://www.
chromium.org/developers/design-documents/site-isolation

[43] M. West, “Initial assignment for the content security policy directives registry,” Internet
Requests for Comments, Google, Inc., RFC 7762, January 2016.

[44] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android permissions:
User attention, comprehension, and behavior,” in Proceedings of the Eighth Symposium
on Usable Privacy and Security, ser. SOUPS "12. New York, NY, USA: ACM, 2012, pp.
3:1-3:14. [Online]. Available: http://doi.acm.org/10.1145/2335356.2335360

[45] M. E. Acer, E. Stark, A. P. Felt, S. Fahl, R. Bhargava, B. Dev, M. Braithwaite, R. Sleevi,
and P. Tabriz, “Where the wild warnings are: Root causes of Chrome HTTPS
certificate errors,” in Proceedings of the 2077 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS "17. New York, NY, USA: ACM, 2017, pp.
1407-1420. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134007

[46] A.P. Felt, A. Ainslie, R. W. Reeder, S. Consolvo, S. Thyagaraja, A. Bettes, H. Harris, and
J. Grimes, “Improving SSL Warnings: Comprehension and Adherence,” in Conference

I KA Web & Mobile Security Page 35

https://www.cybok.org
https://doi.org/10.1145/2736277.2741663
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://doi.acm.org/10.1145/2382196.2382205
https://developer.android.com/studio/publish/app-signing
https://publications.cispa.saarland/2815/
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://dl.acm.org/citation.cfm?id=1855768.1855794
http://dl.acm.org/citation.cfm?id=1855768.1855794
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
http://www.rfc-editor.org/rfc/rfc6454.txt
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
http://doi.acm.org/10.1145/2335356.2335360
http://doi.acm.org/10.1145/3133956.3134007

I The Cyber Security Body Of Knowledge CyBGK

on Human Factors and Computing Systems, 2015.

[47] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport Security (HSTS),” Internet
Requests for Comments, RFC Editor, RFC 6797, November 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6797.txt

[48] “HTTPS everywhere,” Mar 2018. [Online]. Available: https://www.eff.org/
https-everywhere

[49] C. Troncoso, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.
Privacy & Online Rights, version 1.0. [Online]. Available: https://www.cybok.org/

[50] Access, “The weakest link in the chain: Vulnerabilities in the SSL certificate authority
system and what should be done about them,” 2011. [Online]. Available: https:/www.
accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf

[51] Google - Certificate Transparency Team, “Certificate transparency,” 2019. [Online].
Available: https://www.certificate-transparency.org/

[52] J. Reschke, “The ‘Basic’ HTTP Authentication Scheme,” Internet Requests for
Comments, Internet Engineering Task Force (IETF), RFC 7617, September 2015.
[Online]. Available: https://tools.ietf.org/html/rfc7617

[53] M. Harbach, E. Von Zezschwitz, A. Fichtner, A. De Luca, and M. Smith, “It's a hard
lock life: A field study of smartphone (un)locking behavior and risk perception,” in
Proceedings of the Tenth USENIX Conference on Usable Privacy and Security, ser.
SOUPS '14. Berkeley, CA, USA: USENIX Association, 2014, pp. 213-230. [Online].
Available: http://dl.acm.org/citation.cfm?id=3235838.3235857

[54] S. Uellenbeck, M. Dirmuth, C. Wolf, and T. Holz, “Quantifying the security of
graphical passwords: The case of Android unlock patterns,” in Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security,
ser. CCS "13. New York, NY, USA: ACM, 2013, pp. 161-172. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516700

[55] A. De Luca, E. von Zezschwitz, N. D. H. Nguyen, M.-E. Maurer, E. Rubegni, M. P.
Scipioni, and M. Langheinrich, “Back-of-device authentication on smartphones,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI "13. New York, NY, USA: ACM, 2013, pp. 2389-2398. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2481330

[56] A. Barth, “Http state management mechanism,” Internet Requests for Comments, RFC
Editor, RFC 6265, April 2011. [Online]. Available: http://www.rfc-editor.org/rfc/rfc6265.
txt

[57] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta, “Surviving the web: A journey
into web session security,’ ACM Comput. Surv., vol. 50, no. 1, pp. 13:1-13:34, Mar. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3038923

[58] G. Stringhini, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.
Adversarial Behaviours, version 1.0. [Online]. Available: https://www.cybok.org/

[59] National Institute of Standards and Technology (NIST), U.S., “NIST Special Publication
800-63B - Digital Identity Guidelines,” 2019. [Online]. Available: https://pages.nist.gov/
800-63-3/sp800-63b.html

[60] National Cyber Security Center (NCSC), UK, “Password administration for system
owners,” 2019. [Online]. Available: https://www.ncsc.gov.uk/collection/passwords/
updating-your-approach

[61] P. G. Inglesant and M. A. Sasse, “The true cost of unusable password policies:
Password use in the wild,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI "10. New York, NY, USA: ACM, 2010, pp. 383-392.
[Online]. Available: http://doi.acm.org/10.1145/1753326.1753384

I KA Web & Mobile Security Page 36

https://www.cybok.org
http://www.rfc-editor.org/rfc/rfc6797.txt
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://www.cybok.org/
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.accessnow.org/cms/assets/uploads/archive/docs/Weakest_Link_in_the_Chain.pdf
https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc7617
http://dl.acm.org/citation.cfm?id=3235838.3235857
http://doi.acm.org/10.1145/2508859.2516700
http://doi.acm.org/10.1145/2470654.2481330
http://www.rfc-editor.org/rfc/rfc6265.txt
http://www.rfc-editor.org/rfc/rfc6265.txt
http://doi.acm.org/10.1145/3038923
https://www.cybok.org/
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
http://doi.acm.org/10.1145/1753326.1753384

I The Cyber Security Body Of Knowledge CyBGK

[62] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor,
and S. Egelman, “Of passwords and people: Measuring the effect of password-
composition policies,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI "11. New York, NY, USA: ACM, 2011, pp. 2595-2604.
[Online]. Available: http://doi.acm.org/10.1145/1978942.1979321

[63] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F. Cranor, H. Dixon,
P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher, “Design and evaluation of a
data-driven password meter,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI "17. New York, NY, USA: ACM, 2017, pp.
3775-3786. [Online]. Available: http://doi.acm.org/10.1145/3025453.3026050

[64] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and C. Herley, “Does my
password go up to eleven?: The impact of password meters on password selection,’
in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI "13. New York, NY, USA: ACM, 2013, pp. 2379-2388. [Online]. Available:
http://doi.acm.org/10.1145/2470654.2481329

[65] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel, “Better managed
than memorized? Studying the impact of managers on password strength and
reuse,” in 27th USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 203-220. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/lyastani

[66] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-Time Password
Algorithm,” RFC 6238, May 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6238.
txt

[67] D. Balfanz, A. Czeskis, J. Hodges, J. J.C. Jones, M. B. Jones, A. Kumar, A. Liao, R. Lin-
demann, and E. Lundberg, “Web authentication: An API for accessing public key cre-
dentials,” https://www.w3.org/TR/webauthn-1/, 2019.

[68] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet Requests for Comments,
Internet Engineering Task Force (IETF), RFC 6749, October 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6749

[69] ——, “The OAuth 2.0 authorization framework,” Internet Requests for Comments,
RFC Editor, RFC 6749, October 2012. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6749.txt

[70] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “Openid connect
core 1.0,” 2014. [Online]. Available: https://openid.net/specs/openid-connect-core-1.0.
html

[71] W. Li and C. J. Mitchell, “Analysing the security of Google’s implementation of
OpenlID connect,” in Proceedings of the 13th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment - Volume 9721, ser. DIMVA
2016. Berlin, Heidelberg: Springer-Verlag, 2016, pp. 357-376. [Online]. Available:
https://doi.org/10.1007/978-3-319-40667-1_18

[72] S. Fahl, S. Dechand, H. Perl, F. Fischer, J. Smrcek, and M. Smith, “Hey, NSA:
Stay away from my market! Future proofing app markets against powerful
attackers.” in ACM Conference on Computer and Communications Security, G.-J.
Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp. 1143-1155. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahIDPFSS14

[73] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated: An
empirical study of third-party library updatability on Android,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS "17. New York, NY, USA: ACM, 2017, pp. 2187-2200. [Online]. Available:

I KA Web & Mobile Security Page 37

https://www.cybok.org
http://doi.acm.org/10.1145/1978942.1979321
http://doi.acm.org/10.1145/3025453.3026050
http://doi.acm.org/10.1145/2470654.2481329
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://www.usenix.org/conference/usenixsecurity18/presentation/lyastani
https://rfc-editor.org/rfc/rfc6238.txt
https://rfc-editor.org/rfc/rfc6238.txt
https://tools.ietf.org/html/rfc6749
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1007/978-3-319-40667-1_18
http://dblp.uni-trier.de/db/conf/ccs/ccs2014.html#FahlDPFSS14

I The Cyber Security Body Of Knowledge cyBGK

http://doi.acm.org/10.1145/3133956.3134059

[74] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda, “Thou
shalt not depend on me: Analysing the use of outdated JavaScript libraries on
the web,” in 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017, 2017. [On-
line]. Available: https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/

[75] P. Kumaraguru, S. Sheng, A. Acquisti, L. F. Cranor, and J. Hong, “Teaching Johnny not
to fall for phish,” ACM Trans. Internet Technol., vol. 10, no. 2, pp. 7:1-7:31, Jun. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1754393.1754396

[76] P. Kumaraguru, J. Cranshaw, A. Acquisti, L. Cranor, J. Hong, M. A. Blair, and
T. Pham, “School of phish: A real-world evaluation of anti-phishing training,” in
Proceedings of the 5th Symposium on Usable Privacy and Security, ser. SOUPS
'‘09. New York, NY, USA: ACM, 2009, pp. 3:1-3:12. [Online]. Available: http:
//doi.acm.org/10.1145/1572532.1572536

[77] Z. Doy, I. Khalil, A. Khreishah, A. Al-Fugaha, and M. Guizani, “SoK: A systematic review
of software-based web phishing detection,” IEEE Communications Surveys Tutorials,
vol. 19, no. 4, pp. 2797-2819, Fourthquarter 2017.

[78] F. Callegati and M. Ramilli, “Frightened by links,” IEEE Security Privacy, vol. 7, no. 6, pp.
72-76, Nov 2009.

[79] T. Espiner, “Adobe addresses flash player ‘clickjacking’ flaw,” Oct 2008. [Online]. Avail-
able: https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/

[80] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer Firefox experience! -
what is it? - InformAction,” 2019. [Online]. Available: https://noscript.net/

[81] S. Tang, N. Dautenhahn, and S. T. King, “Fortifying web-based applications
automatically,” in Proceedings of the 18th ACM Conference on Computer and
Communications Security, ser. CCS "11. New York, NY, USA: ACM, 2011, pp. 615-626.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046777

[82] Mozilla and individual contributors, “Web Storage API” 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage API

[83] ——, “IndexedDB API,” 2019. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/API/IndexedDB_API

[84] J. Manico, D. Righetto, and P. lonescu, “JSON web token for Java. OWASP cheat sheet
series,” 2017. [Online]. Available: https://cheatsheetseries.owasp.org/cheatsheets/
JSON_Web_Token_Cheat_Sheet_for_Java.html

[85] Mozilla and individual contributors, “Window.sessionStorage,” 2019. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage

[86] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge attacks on
smartphone touch screens,” in Proceedings of the 4th USENIX Conference on Offensive
Technologies, ser. WOOT'10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1-7.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1925004.1925009

[87] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt, “Understanding
shoulder surfing in the wild: Stories from users and observers,” in Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, ser. CHI
"17. New York, NY, USA: ACM, 2017, pp. 4254-4265. [Online]. Available: http:
//doi.acm.org/10.1145/3025453.3025636

[88] E. Gabrilovich and A. Gontmakher, “The homograph attack,” Communications
of the ACM, vol. 45, no. 2, pp. 128-, Feb. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/503124.503156

I KA Web & Mobile Security Page 38

https://www.cybok.org
http://doi.acm.org/10.1145/3133956.3134059
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/thou-shalt-not-depend-me-analysing-use-outdated-javascript-libraries-web/
http://doi.acm.org/10.1145/1754393.1754396
http://doi.acm.org/10.1145/1572532.1572536
http://doi.acm.org/10.1145/1572532.1572536
https://www.cnet.com/news/adobe-addresses-flash-player-clickjacking-flaw/
https://noscript.net/
http://doi.acm.org/10.1145/2046707.2046777
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.html
https://developer.mozilla.org/en-US/docs/Web/API/Window/sessionStorage
http://dl.acm.org/citation.cfm?id=1925004.1925009
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/3025453.3025636
http://doi.acm.org/10.1145/503124.503156
http://doi.acm.org/10.1145/503124.503156

I The Cyber Security Body Of Knowledge CyBGK

[89] F. Quinkert, T. Lauinger, W. K. Robertson, E. Kirda, and T. Holz, “It's not what it
looks like: Measuring attacks and defensive registrations of homograph domains,’
in 7th IEEE Conference on Communications and Network Security, CNS 2019,
Washington, DC, USA, June 10-12, 2019, 2019, pp. 259-267. [Online]. Available:
https://doi.org/10.1109/CNS.2019.8802671

[90] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download
attacks and malicious JavaScript code,’ in Proceedings of the 19th International
Conference on World Wide Web, ser. WWW "10. New York, NY, USA: ACM, 2010, pp.
281-290. [Online]. Available: http://doi.acm.org/10.1145/1772690.1772720

[91] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing attacks on modern
Android,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS "18. New York, NY, USA: ACM, 2018, pp.
1788-1801. [Online]. Available: http://doi.acm.org/10.1145/3243734.3243778

[92] V. Fratantonio, C. Qian, S. Chung, and W. Lee, “Cloak and dagger: From two permissions
to complete control of the Ul feedback loop,” in Proceedings of the IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2017.

[93] N. Smart, The Cyber Security Body of Knowledge. University of Bristol, 2019, ch.
Cryptography, version 1.0. [Online]. Available: https://www.cybok.org/

[94] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android application
security,” in Proceedings of the 20th USENIX Conference on Security, ser. SEC'11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 21-21. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2028067.2028088

[95] J. Reardon, A. Feal, P Wijesekera, A. E. B. On, N. Vallina-Rodriguez, and S. Egelman,
“50 ways to leak your data: An exploration of apps’ circumvention of the Android
permissions system,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 603-620. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

[96] OWASP, “Top 10-2017 Al-Injection,” 2017. [Online]. Available: https://www.owasp.org/
index.php/Top_10-2017_ATl-Injection

[97] ——, “Blind SQL Injection,” 2013. [Online]. Available: https://www.owasp.org/index.php/
Blind_SQL _Injection

[98] Oracle Corporation, “Prepared SQL Statement Syntax,” 2019. [Online]. Available:
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html

[99] The PostgreSQL Global Development Group, “PostgreSQL: Documentation: 11: PRE-
PARE,” 2019. [Online]. Available: https://www.postgresql.org/docs/current/sql-prepare.
html

[100] DHS and CISA, “CVE - common vulnerabilities and exposures,” 2019. [Online]. Available:
https://cve.mitre.org/

[101] J. Reschke, “Use of the Content-Disposition Header Field in the Hypertext Transfer
Protocol (HTTP),” Internet Request for Comments, Internet Engineering Task Force
(IETF), RFC, June 2011. [Online]. Available: https://tools.ietf.org/html/rfc6266

[102] “Cross-site scripting,” April 2019. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Glossary/Cross-site_scripting

[103] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for cross-site request
forgery,” in Proceedings of the 15th ACM Conference on Computer and Communications
Security, ser. CCS'08. New York, NY, USA: ACM, 2008, pp. 75—-88. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455782

[104] 1. Synopsis, “The heartbleed bug,” http://heartbleed.com/, 2014.

[105] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver,

I KA Web & Mobile Security Page 39

https://www.cybok.org
https://doi.org/10.1109/CNS.2019.8802671
http://doi.acm.org/10.1145/1772690.1772720
http://doi.acm.org/10.1145/3243734.3243778
https://www.cybok.org/
http://dl.acm.org/citation.cfm?id=2028067.2028088
http://dl.acm.org/citation.cfm?id=2028067.2028088
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Top_10-2017_A1-Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://dev.mysql.com/doc/refman/8.0/en/sql-syntax-prepared-statements.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://www.postgresql.org/docs/current/sql-prepare.html
https://cve.mitre.org/
https://tools.ietf.org/html/rfc6266
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
http://doi.acm.org/10.1145/1455770.1455782

I The Cyber Security Body Of Knowledge CyBGK

D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The matter of Heartbleed,
in Proceedings of the 2014 Conference on Internet Measurement Conference, ser.
IMC "14. New York, NY, USA: ACM, 2014, pp. 475-488. [Online]. Available:
http://doi.acm.org/10.1145/2663716.2663755

[106] Z. Su and G. Wassermann, “The essence of command injection attacks in web
applications,” in Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL'06. New York, NY, USA: ACM, 2006,
pp. 372-382. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111070

[107] M. Van Gundy and H. Chen, “Noncespaces: Using randomization to defeat cross-site
scripting attacks,” Comput. Secur., vol. 31, no. 4, pp. 612-628, Jun. 2012. [Online].
Available: http://dx.doi.org/10.1016/j.cose.2011.12.004

[108] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL landscape: A thorough
analysis of the X.509 PKI using active and passive measurements,” in Proceedings
of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference,
ser. IMC "11. New York, NY, USA: ACM, 2011, pp. 427-444. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068856

[109] S. Fahl, Y. Acar, H. Perl, and M. Smith, “Why Eve and Mallory (also) love webmasters:
A study on the root causes of SSL misconfigurations,” in Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security, ser.
ASIA CCS "14. New York, NY, USA: ACM, 2014, pp. 507-512. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590341

[110] K. Krombholz, W. Mayer, M. Schmiedecker, and E. Weippl, “l have no idea
what I'm doing” - on the usability of deploying HTTPS,” in 26th USENIX Security
Symposium (USENIX Security 2017), August 2017, p. 1338. [Online]. Available:
https://publications.cispa.saarland/2654/

[111] K. Krombholz, K. Busse, K. Pfeffer, M. Smith, and E. von Zezschwitz, “If HTTPS were
secure, i wouldn't need 2FA” - end user and administrator mental models of HTTPS,”
in S&P 2079, May 2019. [Online]. Available: https://publications.cispa.saarland/2788/

[112] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard
Argon2 password hash and proof-of-work function,” Internet Engineering Task Force,
Internet-Draft draft-irtf-cfrg-argon2-08, Oct. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08

[113] S. Josefsson, “PKCS #5: Password-Based Key Derivation Function 2 (PBKDF2) Test
Vectors,” RFC 6070, Jan. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6070.txt

[114] OWASP, “OWASP - password storage cheat sheet,” 2019. [Online]. Available: https:
//cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

[115] Wikipedia contributors, “List of data breaches — Wikipedia, the free encyclopedia,’
2019. [Online]. Available: https://en.wikipedia.org/wiki/List_of _data_breaches

[116] K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Invernizzi, B. Benko,
T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein, “Protecting accounts from
credential stuffing with password breach alerting,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1556-1571. [Online]. Available: https://www.usenix.org/conference/usenixsecurity19/
presentation/thomas

I KA Web & Mobile Security Page 40

https://www.cybok.org
http://doi.acm.org/10.1145/2663716.2663755
http://doi.acm.org/10.1145/1111037.1111070
http://dx.doi.org/10.1016/j.cose.2011.12.004
http://doi.acm.org/10.1145/2068816.2068856
http://doi.acm.org/10.1145/2590296.2590341
https://publications.cispa.saarland/2654/
https://publications.cispa.saarland/2788/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-argon2-08
https://rfc-editor.org/rfc/rfc6070.txt
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas
https://www.usenix.org/conference/usenixsecurity19/presentation/thomas

	1 Introduction
	2 Fundamental Concepts and Approaches
	2.1 Appification
	2.2 Webification
	2.2.1 Uniform Resource Locators
	2.2.2 Hypertext Transfer Protocol
	2.2.3 Hypertext Markup Language
	2.2.4 Cascading Style Sheets
	2.2.5 JavaScript
	2.2.6 WebAssembly
	2.2.7 WebViews

	2.3 Application Stores
	2.4 Sandboxing
	2.4.1 Application Isolation
	2.4.2 Content Isolation

	2.5 Permission Dialog Based Access Control
	2.5.1 The Security Principals
	2.5.2 The Reference Monitor
	2.5.3 The Security Policy
	2.5.4 Different Permission Approaches

	2.6 Web PKI and HTTPS
	2.7 Authentication
	2.7.1 HTTP Authentication
	2.7.2 Mobile Device Authentication

	2.8 Cookies
	2.9 Passwords and Alternatives
	2.9.1 Password Policies
	2.9.2 Password Strength Meters
	2.9.3 Password Managers
	2.9.4 Multi-Factor Authentication
	2.9.5 WebAuthn
	2.9.6 OAuth

	2.10 Frequent Software Updates

	3 Client Side Vulnerabilities and Mitigations
	3.1 Phishing & Clickjacking
	3.1.1 Phishing
	3.1.2 Clickjacking

	3.2 Client Side Storage
	3.2.1 Client Side Storage in the Browser
	3.2.2 Client Side Storage in Mobile Applications

	3.3 Physical Attacks
	3.3.1 Smudge attacks
	3.3.2 Shoulder Surfing

	4 Server Side Vulnerabilities and Mitigations
	4.1 Injection Vulnerabilities
	4.1.1 SQL-Injection
	4.1.2 Command Injections
	4.1.3 User Uploaded Files
	4.1.4 Local File Inclusion
	4.1.5 Cross-Site Scripting (XSS)
	4.1.6 Cross-Site Request Forgery

	4.2 Server Side Misconfigurations & Vulnerable Components
	4.2.1 Firewall
	4.2.2 Load Balancers
	4.2.3 Databases

	5 Conclusion

